Bachelor of Technology (Mechanical & Automation Engineering)

Programme Code: BTM

Duration – 4 Years Full Time

Programme Structure And Curriculum & Scheme of Examination

2017-21

AMITY UNIVERSITY RAJASTHAN

PROGRAMME STRUCUTRE

FIRST SEMESTER

Code	Title	Category	L	T	P	Credit
AM 101	Applied Mathematics – I	CC	3	1	-	4
AP 102	Applied Physics-I – Fields & Waves	CC	2	1	-	3
AC 103	Applied Chemistry	CC	2	1	-	3
BME 104	Elements of Mechanical Engineering	CC	2	1	-	3
BCS 105	Introduction to Computers & Programming in C	CC	2	1	-	3
BEE 106	Electrical Science	CC	2	1	-	3
AP 122	Applied Physics-I – Fields & Waves Lab	CC	-	-	2	1
AC 123	Applied Chemistry Lab	CC	-	-	2	1
BME 124	Elements of Mechanical Engineering Lab	CC	-	-	2	1
BCS 125	Programming in C Lab	CC	-	-	2	1
BEE 126	Electrical Science Lab	CC	-	-	2	1
	Va	lue Added				
BCS 101	English	VA	1	-	-	1
BSS 104	Understanding Self for Effectiveness	VA	1	-	-	1
	Foreign Language - I	VA	2	-	-	2
FLT 101	French					
FLG 101	German					
FLS 101	Spanish					
FLC 101	Chinese					
	TOTA	L L		1	1	28

SECOND SEMESTER

Code	Title	Category	L	T	P	Credit			
	Core Courses								
AM 201	Applied Mathematics – II	CC	3	1	-	4			
AP 202	Applied Physics-II – Modern Physics	CC	2	1	-	3			
BCS 203	Object Oriented Programming using C ⁺⁺	CC	2	1	-	3			
BME 204	Engineering Mechanics	CC	2	1	-	3			
BME 205	Engineering Graphics	CC	1	-	-	1			
AP 222	Applied Physics-II – Modern Physics Lab	CC	-	-	2	1			

BCS 223	Object Oriented Programming using C ⁺⁺ Lab	CC	-	-	2	1	
BME 224	Engineering Mechanics Lab	CC	-	-	2	1	
BME 225	Engineering Graphics Lab	CC	-	-	2	1	
Open Elective							
	Open Elective-1 OE 3						
Value Added							
BCS 201	English	VA	1	-	-	1	
BSS 204	Behavioural Science – II	VA	1	-	-	1	
	Foreign Language – II	VA	2	-	-	2	
FLT 201	French						
FLG 201	German						
FLS 201	Spanish						
FLC 201	Chinese						
EVS 001	Environmental Studies	VA	3	1	-	4	
TOTAL						29	

THIRD SEMESTER

Code	Title	Category	L	T	P	Credit
BTM 301	Numerical Analysis &	CC	3	-	-	3
	Programming					
BTM 302	Thermodynamics	CC	2	1	-	3
BTM 303	Mechanics of Solids	CC	2	1	-	3
BTM 304	Mechanics of Fluids	CC	2	1	-	3
BTM 305	Electronics	CC	2	-	-	2
BTM 320	Machine Drawing Lab	CC	-	-	2	1
BTM 321	Numerical Analysis & Programming Lab	CC	-	-	2	1
BTM 322	Thermodynamics Lab	CC	-	-	2	1
BTM 323	Mechanics of Solids Lab	CC	-	-	2	1
BTM 324	Mechanics of Fluids Lab	CC	-	-	2	1
BTM 325	Electronics Lab	CC	-	-	2	1
DE E	lectives 1: Student has to select 1	l course fron	n the list o	of followin	g DE elec	tives
BTM 306	Material Science & Metallurgy	DE	2	-	-	
BTM 307	Compressible flow	DE	2	-	-	2
	Op	en Elective		I		
	Open Elective-2	OE	3	-	-	3
	Va	alue Added		I	I	
BCS 301	Communication Skills – I	VA	1	-	-	1

BSS 301	Behavioral Science – III	VA	1	-	-	1
	Foreign Language - III	VA	2	-	-	2
FLF 301	French					
FLG 301	German					
FLS 301	Spanish					
FLC 301	Chinese					
TOTAL						

FOURTH SEMESTER

Code	Title	Category	L	T	P	Credit
BTM 401	Kinematics of Machines	CC	3	-	-	3
BTM 402	Computer Networks	CC	3	-	-	3
BTM 403	Heat & Mass Transfer	CC	2	1	-	3
BTM 404	Manufacturing Machines	CC	3	-	-	3
BTM 405	Principles of Computer Graphics	CC	2	-	-	2
BTM 421	Kinematics of Machines Lab	CC			2	1
BTM 422	Manufacturing Machines Lab	CC			2	1
BTM 423	Principles of Computer Graphics Lab	CC			2	1
DE E	lectives 2: Student has to select	1 course from	m the list	of followin	ng DE ele	ctives
BTM 406	Metrology	DE	2	-	-	
BTM 424	Metrology Lab	DE	-	-	2	3
BTM 407	Quality control & Quality Assurance	DE	3	-	-	-
	O	pen Elective				•
	Open Elective-3	OE	3	-	-	3
	V	alue Added	1	1		1
BCS 401	Communication Skills - II	VA	1	-	-	1
BSS 401	Behavioural Science – IV	VA	1	-	-	1
	Foreign Language - IV	VA	2	-	-	2
FLF 401	French					
FLG 401	German					
FLS 401	Spanish					
FLC 401	Chinese					
	ТОТ	TAL				27

FIFTH SEMESTER

Code	Title	Category	L	T	P	Credit
BTM 501	Machine Design – I	CC	3	-	-	3
BTM 502	Relational Database Management System	CC	2	-	-	2
BTM 503	Measurements & Controls	CC	2	-	-	2
BTM 504	Dynamics of Machines	CC	2	1	-	3
BTM 521	Machine Design – I Lab	CC			2	1
BTM 522	Relational Database Management System Lab	CC			2	1
BTM 523	Measurements & Controls Lab	CC			2	1
BTM 524	Programming Lab - II (MAT Lab)	CC	ı	-	2	1
BTM 525	Computer Aided Drafting & Design Lab	CC	1	-	2	1
BTM 550	Practical Training (Evaluation)	CC	-	-	-	6
DE Ele	ectives 3: Student has to select	1 course fro	m the list	of followi	ing DE ele	ectives
BTM 505	Theory of Metal Forming	DE	2	-	-	
BTM 506	Management of Manufacturing Systems	DE	2	-	-	2
		en Elective		•	1	<u> </u>
	Open Elective-4	OE	3	-	-	3
	Va	alue Added				
BCS 501	Communication Skills - III	VA	1	_	_	1
BSS 501	Behavioural Science –V	VA	1	-	_	1
	Foreign Language – V	VA	2	-	_	2
FLF 501	French					
FLG 501	German					
FLS 501	Spanish					
FLC 501	Chinese					
	ТОТ	AL		1		30

SIXTH SEMESTER

Code	Title	Category	L	T	P	Credit
BTM 601	Machine Design – II	CC	3	0	-	3
BTM 602	Microprocessor System	CC	2	-	-	2
BTM 603	Fluid Power System	CC	2	1	-	3
BTM 604	Metal Cutting & Tool Design	CC	3	-	-	3
BTM 605	Internal Combustion Engines	CC	3	-	-	3
BTM 621	Machine Design – II Lab	CC	-	-	2	1
BTM 622	Microprocessor System Lab	CC	-	-	2	1
BTM 623	Fluid Power System Lab	CC	-	-	2	1
BTM 624	Metal Cutting & Tool Design Lab	CC	-	-	2	1
D	E Electives 4: Student has to selec	t 1 course fr	om the lis	t of followi	ng DE electi	ves
BTM 606	Power Plant Practices	DE	3	-	-	2
BTM 607	Industrial Automation & Control	DE	3	-	-	3
	()pen Electiv	e			
	Open Elective-5	OE	3	-	-	3
		Value Addeo	1			
BCS 601	Communication Skill – IV	VA	1	-	-	1
BSS 601	Behavioural Science – VI	VA	1	-	-	1
	Foreign Language - VI	VA	2	-	-	2
FLF 601	French					
FLG 601	German					
FLS 601	Spanish					
FLC 601	Chinese					
	TOT	TAL				28

INDUSTRIAL TRAINING – II: 6-8 Weeks

SEVENTH SEMESTER

Code	Title	Category	L	T	P	Credit
BTM 701	Operations Research	CC	3	-	-	3
BTM 702	Mechatronics	CC	3	-	-	3
BTM 703	Electrical Machines	CC	2	-	-	2
BTM 721	Operations Research Lab	CC	-	-	2	1
BTM 722	Mechatronics Lab	CC	-	-	2	1
BTM 723	Electrical Machines Lab	CC	-	-	2	1

BTM 750	Industrial Training (Evaluation)	CC	-	-	-	6
BTM 760	Seminar	CC	-	-	-	3
D	E Electives 5: Student has to select	1 course fro	om the list o	of followin	g DE electi	ves
BTM 704	Automotive Engineering	DE	3	-	-	
BTM 724	Automotive Engineering Lab	DE	-	-	2	
BTM 705	Robotics	DE	3	-	-	4
BTM 725	Robotics Lab	DE	-	-	2	
	C	pen Electivo	e			
	Open Elective-6	OE	3			3
	1	alue Added	[
BCS 701	Communication Skills – V	VA	1	-	-	1
BSS 701	Behavioural Science – VII	VA	1	-	-	1
	Foreign Language – VII	VA	2	-	-	2
FLF 701	French					
FLG 701	German					
FLS 701	Spanish					
FLC 701	Chinese					
TOTAL						31

EIGHTH SEMESTER

Code	Title	Category	L	T	P	Credit			
	Core Courses								
BTM 801	Refrigeration & Air-conditioning	CC	3	-	-	3			
BTM 802	Computer Aided Manufacturing	CC	3	-	-	3			
BTM 821	Refrigeration & Air-conditioning Lab	CC	-	-	2	1			
BTM 822	Computer Aided Manufacturing Lab	CC	-	-	2	1			
BTM 860	Project	CC	-	-	-	12			
DE	Electives 6: Student has to select	l course fron	n the list of	following	DE electiv	ves			
BTM 803	Gear Technology	DE	2	-	-				
BTM 804	Mathematical Modeling	DE	2	-	-	2			
BTM 805	Advanced manufacturing machines	DE	2	-	-				
	TOT	AL				22			

APPLIED MATHEMATICS – I

Course Code: AM 101 L:3 T:1 C:4

Course Objective:

The knowledge of Mathematics is necessary for a better understanding of almost all the Engineering and Science subjects. Here our intention is to make the students acquainted with the concept of basic topics from Mathematics, which they need to pursue their Engineering degree in different disciplines.

Course Contents:

Module I: Differential Calculus

Successive differentiation, Leibnitz's theorem (without proof), Mean value theorem, Taylor's theorem (proof), Remainder terms, Asymptote & Curvature, Partial derivatives, Chain rule, Differentiation of Implicit functions, Exact differentials, Tangents and Normals, Maxima, Approximations, Differentiation under integral sign, Jacobians and transformations of coordinates.

Module II: Integral Calculus

Fundamental theorems, Reduction formulae, Properties of definite integrals, Applications to length, area, volume, surface of revolution, improper integrals, Multiple Integrals-Double integrals, Applications to areas, volumes.

Module III: Ordinary Differential Equations

Formation of ODEs, Definition of order, degree & solutions, ODE of first order: Method of separation of variables, homogeneous and non homogeneous equations, Exactness & integrating factors, Linear equations & Bernoulli equations, General linear ODE of nth order, Solution of homogeneous equations, Operator method, Method of undetermined coefficients, Solution of simple simultaneous ODE.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

Text & References:

Text:

- Differential Calculus by Shanti Narain
- Integral Calculus by Shanti Narain

References:

- Differential Equation by A.R. Forsyth
- Higher Engineering Mathematics by H.K. Dass

APPLIED PHYSICS - I - FIELDS AND WAVES

Course Code: AP 102 L:2 T:1 C:3

Course Objective:

Aim of this course is to introduce the students to fundamentals of graduate level physics, which form the basis of all applied science and engineering

Course Contents:

Module I: Oscillations & Waves

Oscillations: Introduction to S.H.M. Damped Oscillations: Differential Equation and its solution, logarithmic decrement, Quality Factor, Different conditions of damping of harmonic oscillations. Forced oscillations: Amplitude and Frequency Response, Resonance, Sharpness of Resonance **Plane Progressive Waves:** Differential Equation and Solution, Superposition of Progressive Waves stationary

waves.

Ultrasonics: Generation and application of ultrasonicwaves.

Module II: Wave Nature of Light

Interference: Coherent Sources, Conditions of interference, Interference due to division of wavefront, Fresnelsbiprism Interference due to division of amplitude, Newton's rings, Interference due to thin films, .

Diffraction: Fresnel and Fraunhofer diffraction, Fraunhofer diffraction at a single slit, double slit, N Slits, Transmission grating, Rayleigh criterion and Resolving power of grating.

Polarization: Birefringence, Nicol prism, Production and analysis of plane, circularly and elliptically polarizedlight, Half and quarter wave plates, Optical rotation, Polarimeter.

Module III: Electromagnetics

Scalar and vector fields, gradient of a scalar field, physical significance of gradient, equipotential surface. Line, surface and volume integrals, Divergence and curl of vector field and mathematical analysis physical significance, Electric flux, Gauss' law, Proof and Applications, Gauss divergence and Stokes theorems.

Differential form of Gauss' Law, Amperes' Law, Displacement current, Faradays Law, Maxwell equations in free space & isotropic media (Integral form & differential form), EM wave propagation in free space, Poynting vector.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

- Waves & oscillation, A. P. French
- Physics of waves, W. C. Elmore & M. A. Heald
- Introduction to Electrodynamics, D. J. Griffith
- Electrodynamics, Gupta, Kumar & Singh
- Optics, A. K. Ghatak
- Engineering Physics, Satya Prakash

APPLIED CHEMISTRY

Course Code: AC 103 L:02 T:01 C:03

Course Objective:

Four basic sciences, Physics, Chemistry, Mathematics and Biology are the building blocks in engineering and technology. Chemistry is essential to develop analytical capabilities of students, so that they can characterize, transform and use materials in engineering and apply knowledge in their field. All engineering fields have unique bonds with chemistry whether it is Aerospace, Mechanical, Environmental and other fields the makeup of substances is always a key factor, which must be known. For electronics and computer science engineering, apartfrom the material, computer modeling and simulation knowledge can be inherited from the molecule designing. The upcoming field of technology like Nanotechnology and Biotechnology depends fully on the knowledge of basic chemistry. With this versatile need in view, course has been designed in such a way so that the student should get an overview of the whole subject.

Course Contents:

Module I: Water Technology

Introduction and specifications of water, Hardness and its determination (EDTA method only), Alkalinity,

Boiler feed water, boiler problems – scale, sludge, priming & foaming: causes & prevention, Boiler problems –caustic embrittlement & corrosion: causes & prevention, Carbonate & phosphate conditioning, colloidal conditioning & calgon treatmentWater softening processes: Lime – soda process, Ion exchange method.

Water for domestic use.

Module II: Fuels

Classification, calorific value of fuel, (gross and net), Determination of calorific value of fuels, bomb calorimeter, Solid fuels - Proximate and ultimate analysis, Octane & Cetane No. and its significance. Numericals on

significance. Numericals on combustion

Module III: Instrumental Methods of analysis

Introduction; Principles of spectroscopy; Laws of absorbance IR: Principle, Instrumentation, Application

UV: Principle, Instrumentation, Application NMR: Principle, Instrumentation, Application

Module IV: Lubricants

Introduction; Mechanism of Lubrication;

Types of Lubricants; Chemical structure related to Lubrication;

Properties of lubricants; Viscosity and Viscosity Index; Iodine Value; Aniline Point; Emulsion

number; FlashPoint; Fire Point; Drop Point; Cloud Point; Pour Point.

Selection of Lubricants.

Module V: Corrosion

Introduction, Mechanism of dry and wet corrosion,

Types of corrosion-Galvanic, Concentration cell, soil, pitting, intergranular, waterline.

Passivity. Factors influencing corrosion.

Corrosion control.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

Text & References:

Text:

- Engineering Chemistry- Jain and Jain
- Engineering Chemistry- Sunita Rattan
- Engineering Chemistry Shashi Chawla

References:

- Engineering Chemistry Dara and Dara
- Spectroscopy- Y.R Sharma
- Corrosion Engineering Fontenna and Greene

ELEMENTS OF MECHANICAL ENGINEERING

Course Code: BME 104 L:02,T:01,C:03

Course Objective:

The objective of this course is to impart the basic knowledge of thermodynamics, stress-strain, materials & their properties and various manufacturing processes to the students of all engineering discipline.

Course Contents:

Module I: Materials: Classification of engineering material, composition of cast iron and carbon steels on iron-carbon diagram and their mechanical properties; Alloy steel and their applications; stress-strain diagram, Hooks law and modulus of elasticity. Tensile, shear, hardness and fatigue testing of materials.

Module II: Measurement:

Temperature, pressure, velocity, flow, strain, force and torque measurement, measurement by Vernier caliper, micrometer, dial gauges, slip gauges, sine-bar and combination set;

Module III: Mechanical Machines:

Introduction to Lathe, Drilling, Milling and Shaping machines, NC machine, CNC machine and DNC machine...

Module IV: Fluids: Fluid properties, pressure, density and viscosity; pressure variation with depth, static and kinetic energy; Euler and Bernouli's equation for incompressible fluids, viscous and turbulent flow, working principle of pumps, compressors and turbines,

Module V: Thermodynamics:

First and second law of thermodynamics; Formation of steam, steam properties, classification and working of boilers, efficiency & performance analysis, natural and induced draught, Refrigeration, vapor absorption & compression cycles, coefficient of perform (COP), Refrigerants

Module VI: I. C. Engines:

Construction, Nomenclature; working of two stroke & four stroke petrol & diesel IC engines, Carnot cycle and ideal efficiency; Otto and diesel cycles;

Module VII: Introduction to Fabrication Processes

Casting Process, Welding & allied process, Forging process.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

- L R.K. Rajput (, 2005) Elements of Mechanical Engineering- Firewall Media
- □ P.K. Nag, (2005) Engineering thermodynamics- Tata McGraw-Hill Education,
- L Automation, Productions systems, and computer Integrated manufacturing by Mikell P. Groover

INTRODUCTION TO COMPUTERS AND PROGRAMMING IN C

Course Code: BCS 105 L:02 T:01 C:03

Course Objective:

The objective of this course module is to acquaint the students with the basics of computers system, its components, data representation inside computer and to get them familiar with various important features of procedure oriented programming language i.e. C.

Course Contents:

Module I: Introduction

Introduction to computer, history, von-Neumann architecture, memory system (hierarchy, characteristics and types), H/W concepts (I/O Devices), S/W concepts (System S/W & Application S/W, utilities). Data Representation: Number systems, character representation codes, Binary ,octal, hexadecimal and their interconversions. Binary arithmetic, floating point arithmetic, signed and unsigned numbers, Memory storage unit.

Module II: Programming in C

History of C, Introduction of C, Basic structure of C program, Concept of variables, constants and data types in C, Operators and expressions: Introduction, arithmetic, relational, Logical, Assignment, Increment and decrement operator, Conditional, bitwise operators, Expressions, Operator precedence and associativity. Managing Input and output Operation, formatting I/O.

Module III: Fundamental Features in C

C Statements, conditional executing using if, else, nesting of if, switch and break Concepts of loops, example of loops in C using for, while and do-while, continue and break. Storage types (automatic, register etc.), predefinedprocessor, Command Line Argument.

Module IV: Arrays and Functions

One dimensional arrays and example of iterative programs using arrays, 2-D arrays Use in matrix computations. Concept of Sub-programming, functions Example of user defined functions. Function prototype, Return values and their types, calling function, function argument, function with variable number of argument, recursion.

Module V: Advanced features in C

Pointers, relationship between arrays and pointers Argument passing using pointers, Array of pointers. Passingarrays as arguments.

Strings and C string library.

Structure and Union. Defining C structures, Giving values to members, Array of structure, Nested structure, passing strings as arguments.

File Handling.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

Text & References:

Text:

- "ANSI C" by E Balagurusamy
- Yashwant Kanetkar, "Let us C", BPB Publications, 2nd Edition, 2001.
- Herbert Schildt, "C: The complete reference", Osbourne McGraw Hill, 4th Edition, 2002.
- V. Raja Raman, "Computer Programming in C", Prentice Hall of India, 1995.

References:

- Kernighan & Ritchie, "C Programming Language", The (Ansi C Version), PHI, 2nd Edition.
- J. B Dixit, "Fundamentals of Computers and Programming in 'C'.
- P.K. Sinha and Priti Sinha, "Computer Fundamentals", BPB publication.

ELECTRICAL SCIENCE

Course Code: BEE 106 L:02,T:01,C:03

Course Objective:

The objective of the course is to provide a brief knowledge of Electrical Engineering to students of all disciplines. This Course includes some theorems related to electrical, some law's related to flow of current, voltages, basic knowledge of Transformer, basic knowledge of electromagnetism, basic knowledge of electrical network.

Course Contents:

Module I: Basic Electrical Quantities

Basic Electrical definitions-Energy, Power, Charge, Current, Voltage, Electric Field Strength, Magnetic Flux Density, etc., Resistance, Inductance and Capacitance. Ideal Source, Independent Source and Controlled Source

Module II: Network Analysis Techniques & Theorems

Circuit Principles: Ohm's Law, Kirchoff's Current Law, Kirchoff's Voltage Law Network Reduction: Star—Delta Transformation, Source Transformation, Nodal Analysis, Loop analysis. Superposition theorem, Thevenin's Theorem, Norton's theorem and Reciprocity theorem.

Module III: Alternating Current Circuits

Peak, Average and RMS values for alternating currents, Power calculation: reactive power, active power, Complex power, power factor, impedance, reactance, conductance, susceptanceResonance: series Resonance, parallel resonance, basic definition of Q factor & Bandwidth.

Module IV: Transformers

Basic Transformer Operation principle, Construction, Voltage relations, current relations, Linear circuit models, open circuit test, short circuit test, Transformer Efficiency.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

Text & References:

• R.J. Smith, R.C. Dorf: Circuits, devices and Systems

 $\bullet \quad \text{ B.L. Thereja: Electrical Technology: Part -1 \& 2}\\$

• V. Deltoro: Electrical Engineering fundamentals

• Schaum's Series: Electrical Circuits

APPLIED PHYSICS LAB - I

Course Code: AP 122 P:02,C:01

List of Experiments:

- 1. To determine the wavelength of sodium light by Newton's rings method.
- 2. To determine the dispersive power of the material of prism with the help of a spectrometer.
- 3. To determine the specific rotation of sugar by Bi-quartz or Laurent half shade polarimeter.
- 4. To determine the speed of ultrasonic waves in liquid by diffraction method.
- 5. To determine the width of a narrow slit using diffraction phenomena.
- 6. To determine the temperature coefficient of platinum wire, using a platinum resistance thermometer and a Callender & Griffth's bridge.
- 7. To determine the value of specific charge (ratio of e/m) of an electron by Thomson method.
- 8. To determine the internal resistance of Leclanche cell with the help of Potentiometer.
- 9. To determine the resistance per unit length of a Carey Foster's bridge wire and also to find out the specific resistance of a given wire.
- 10. To plot graph showing the variation of magnetic field with distance along the aixs of a circular coil carrying current, and hence estimate the radius of the coil.
- 11. To determine the value of acceleration due to gravity ('g') in the laboratory using bar pendulum.
- 12. To determine the moment of inertia of a flywheel about its own axis of rotation.
- 13. To determine the density of material of the given wire with the help of sonometer.

Examination Scheme:

IA				н,	E
A	PR	LR	V	PR	\mathbf{V}
5	10	10	5	35	35

APPLIED CHEMISTRY LAB

Course Code: AC 123 P:02,C:01

Course Contents:

List of Experiments:

(Any 10 Experiments)

- 1. To determine the ion exchange capacity of a given cation exchanger.
- 2. To determine the temporary, permanent and total hardness of a sample of water by complexometric titration method.
- 3. To determine the type and extent of alkalinity of given water sample.
- 4. To determine the number of water molecules of crystallization in Mohr's salt (ferrous ammonium sulphate) provided standard potassium dichromate solution (0.1N) using diphenylamine as internal indicator.
- 5. To determine the ferrous content in the supplied sample of iron ore by titrimetric analysis against standard $K_2Cr_2O_7$ solution using potassium ferricyanide $[K_3Fe(CN)_6]$ as external indicator.
- 6. To determine the surface tension of a given liquid by drop number method.
- 7. To determine the composition of a liquid mixture A and B (acetic acid and water) by surface tension method.
- 8. To prepare and describe a titration curve for phosphoric acid sodium hydroxide titration using pH-meter.
- 9. To find the cell constant of conductivity cell.
- 10. Determine the strength of hydrochloric acid solution by titrating it against standard sodium hydroxide solution conduct metrically
- 11. Determination of Dissolved oxygen in the given water sample.
- 12. To determine the total residual chlorine in water.
- 13. Determination of amount of oxalic acid and H_2SO_4 in 1 L of solution using N/10 NaOH and N/10 KMnO₄ solution.
- 14. Determination of viscosity of given oil by means of Redwood viscometer I.
- 15. To determine flash point and fire point of an oil by Pensky Martin's Apparatus
- 16. To determine the Iodine value of the oil.

Examination Scheme:

IA				H.	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

ELEMENTS OF MECHANICAL ENGINEERING LAB

Course Code: BME 124 P:02,C:01

Course Contents:

- Tensile testing of standard mild steel specimen.
- To verify Bernoulli's theorem.
- Flow measurements by venturi and orifice meters.
- Linear and angular measurement using, Vernier; Micrometer, slip gauge, dial gauge and sine-bar.
- Study of different types of boilers and mountings.
- Study of 4 Stroke Petrol and Diesel Engines
- Study of 2 Stroke Petrol and Diesel Engines
- To find COP of a Vapour Compression Refrigeration system
- To perform various operations on Lathe and Study of Lathe.

• Welding:

Introduction of welding processes, classification, gas welding, arc welding, resistance welding.

• Sheet metal working:

Introduction to sheet metal shop, Shearing, trimming, blanking, piercing, shaving, notching, stretchforming, nibbling coining, embossing and drawing.

• <u>Casting:</u>

Introduction of casting, pattern, mould making procedures, sand mould casting, casting defects, allowances of pattern.

• Forging:

Forging-introduction, upsetting & drawing out, drop forging, press forging & m/c forging

Carpentry shop

Examination Scheme:

IA				L.	Æ
A	PR	LR	V	PR	V
5	10	10	5	35	35

PROGRAMMING IN C LAB

Course Code: BCS 125 P:02,C:01

Software Required: Turbo C

Course Contents:

• C program involving problems like finding the nth value of cosine series, Fibonacci series. Etc.

- C programs including user defined function calls
- C programs involving pointers, and solving various problems with the help of those.
- File handling

Examination Scheme:

IA				H.	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

ELECTRICAL SCIENCE LAB

Course Code: BEE 126 P:02, C:01

List of Experiments:

- 1. To verify KVL & KCL in the given network.
- 2. To verify Superposition Theorem.
- 3. To verify Maximum Power Transfer Theorem.
- 4. To verify Reciprocity Theorem.
- 5. To determine and verify RTh, VTh, RN, IN in a given network.
- 6. To perform open circuit & short circuit test on a single-phase transformer.
- 7. To study transient response of a given RLC Circuit.
- 8. To perform regulation, ratio & polarity test on a single-phase transformer.
- 9. To measure power & power factor in a three phase circuit by two wattmeter method.
- 10. To measure power & power factor in a three phase load using three ammeter & three voltmeter method.

Examination Scheme:

]	E	E		
A	PR	LR	V	PR	V
5	10	10	5	35	35

ENGLISH

Course Code: BCS 101 C:01

Course Objective:

The course is intended to give a foundation of English Language. The literary texts are indented to help students to inculcate creative & aesthetic sensitivity and critical faculty through comprehension, appreciation and analysis of the prescribed literary texts. It will also help them to respond form different perspectives.

Course Contents:

Module I: Vocabulary

Use of Dictionary

Use of Words: Diminutives, Homonyms & Homophones

Module II: Essentials of Grammar - I

Articles
Parts of
SpeechTenses

Module III: Essentials of Grammar - II

Sentence Structure Subject -Verb agreementPunctuation

Module IV: Communication

The process and importance Principles & benefits of Effective Communication

Module V: Spoken English Communication

Speech Drills Pronunciation and accentStress and Intonation

Module VI: Communication Skills-I

Developing listening skills Developing speaking skills

Module VII: Communication Skills-II

Developing Reading SkillsDeveloping writing Skills

Module VIII: Written English communication

Progression of Thought/ideasStructure of Paragraph Structure of Essays

Module IX: Short Stories

Of Studies, by Francis Bacon Dream Children, by Charles Lamb The Necklace, by Guy de MaupassantA Shadow, by R.K. Narayan Glory at Twilight, Bhabani Bhattacharya

Module X: Poems

All the Worlds a Stage To Autumn Shakespeare Keats Walt Whitman Rabindranath H.W. Longfellow

Examination Scheme:

Components	A	CT	HA	EE
Weightage (%)	05	15	10	70

- Madhulika Jha, Echoes, Orient Long Man
- Ramon & Prakash, Business Communication, Oxford.
- Sydney Greenbaum Oxford English Grammar, Oxford.
- Successful Communications, Malra Treece (Allyn and Bacon)
- Effective Technical Communication, M. Ashraf Rizvi.

^{* 30} hrs Programme to be continued for Full year

BEHAVIOURAL SCIENCE - I (UNDERSTANDING SELF FOR EFFECTIVENESS)

Course Code: BSS 104 C: 01

Course Objective:

This course aims at imparting:

- Understanding self & process of self exploration
- Learning strategies for development of a healthy self esteem
- Importance of attitudes and its effective on personality
- Building Emotional Competence

Course Contents:

Module I: Self: Core Competency

Understanding of Self Components of Self – Self identity Self concept Self confidence Self image

Module II: Techniques of Self Awareness

Exploration through Johari Window
Mapping the key characteristics of self
Framing a charter for self
Stages – self awareness, self acceptance and self realization

Module III: Self Esteem & Effectiveness

Meaning and Importance Components of self esteem High and low self esteem Measuring your self esteem

Module IV: Building Positive Attitude

Meaning and nature of attitude Components and Types of attitude Importance and relevance of attitude

Module V: Building Emotional Competence

Emotional Intelligence – Meaning, components, Importance and RelevancePositive and Negative emotions Healthy and Unhealthy expression of emotions

Module VI: End-of-Semester Appraisal

Viva based on personal journal
Assessment of Behavioural change as a result of trainingExit Level Rating by Self and Observer

Examination Scheme:

Components	SAP	A	Mid Term Test (CT)	VIVA	Journal for Success (JOS)
Weightage (%)	20	05	20	30	25

- Organizational Behaviour, Davis, K.
- Hoover, Judhith D. Effective Small Group and Team Communication, 2002, Harcourt College Publishers
- Dick, Mc Cann & Margerison, Charles: Team Management, 1992 Edition, viva books
- Bates, A. P. and Julian, J.: Sociology Understanding Social Behaviour
- Dressler, David and Cans, Donald: The Study of Human Interaction
- Lapiere, Richard. T Social Change

- Lindzey, G. and Borgatta, E: Sociometric Measurement in the Handbook of Social Psychology, Addison Welsley, US.
- Rose, G.: Oxford Textbook of Public Health, Vol.4, 1985.
- LaFasto and Larson: When Teams Work Best, 2001, Response Books (Sage), New Delhi
- J William Pfeiffer (ed.) Theories and Models in Applied Behavioural Science, Vol 2, Group (1996); Pfeiffer & Company
- Smither Robert D.; The Psychology of Work and Human Performance, 1994, Harper Collins College Publishers

Course Code: FLF 101 C: 02

Course Objective:

To familiarize the students with the French language

- with the phonetic system
- with the syntax
- with the manners
- with the cultural aspects

Course Contents:

Module A: pp. 01 to 37: Unités 1, 2, Unité 3 Object if 1, 2

Only grammar of Unité 3: objectif 3, 4 and 5

Contenu lexical: Unité 1: Découvrir la langue française : (oral et écrit)

- 1. se présenter, présenter quelqu'un, faire la connaissance des autres, formules de politesse, rencontres
- 2. dire/interroger si on comprend
- 3. Nommer les choses

Unité 2: Faire connaissance

- 1. donner/demander des informations sur une personne, premiers contacts, exprimer ses goûts et ses préférences
- 2. Parler de soi: parler du travail, de ses activités, de son pays, de sa ville.

Unité 3: Organiser son temps

1. dire la date et l'heure

Contenu grammatical:

- 1. organisation générale de la grammaire
- 2. article indéfini, défini, contracté
- 3. nom, adjectif, masculin, féminin, singulier et pluriel
- 4. négation avec « de », "moi aussi", "moi non plus"
- 5. interrogation : Inversion, est-ce que, qui, que, quoi, qu'est-ce que, où, quand, comment, quel(s), quelle(s)
 Interro-négatif : réponses : oui, si, non
- 6. pronom tonique/disjoint- pour insister après une préposition
- 7. futur proche

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• le livre à suivre : Campus: Tome 1

GERMAN - I

Course Code: FLG 101 C: 02

Course Objective:

To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.

To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany

Course Contents:

Module I: Introduction

Self introduction: heissen, kommen, wohnwn, lernen, arbeiten, trinken, etc. All personal pronouns in relation to the verbs taught so far

Greetings: Guten Morgen!, Guten Tag!, Guten Abend!, Gute Nacht!, Danke sehr!, Danke!, Vielen Dank!, (estut mir Leid!),

Hallo, wie geht's?: Danke gut!, sehr gut!, prima!, ausgezeichnet!,

Es geht!, nicht so gut!, so la la!, miserabel!

Module II: Interviewspiel

To assimilate the vocabulary learnt so far and to apply the words and phrases in short dialogues in an interview – game for self introduction.

Module III: Phonetics

Sound system of the language with special stress on Dipthongs

Module IV: Countries, nationalities and their languages

To make the students acquainted with the most widely used country names, their nationalitie and the languagespoken in that country.

Module V: Articles

The definite and indefinite articles in masculine, feminine and neuter gender. All Vegetables, Fruits, Animals, Furniture, Eatables, modes of Transport

Module VI: Professions

To acquaint the students with professions in both the genders with the help of the verb "sein".

Module VII: Pronouns

Simple possessive pronouns, the use of my, your, etc.

The family members, family Tree with the help of the verb "to have"

Module VIII: Colours

All the color and color related vocabulary – colored, colorful, colorless, pale, light, dark, etc.

Module IX: Numbers and calculations – verb "kosten"

The counting, plural structures and simple calculation like addition, subtraction, multiplication and division totest the knowledge of numbers.

"Wie viel kostet das?"

Module X: Revision list of Question pronouns

W – Questions like who, what, where, when, which, how, how many, how much, etc.

Examination Scheme:

Components	CT1	CT2	С	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs

SPANISH - I

Course Code: FLS 101 C: 02

Course Objective:

To enable students acquire the relevance of the Spanish language in today's global context, how to greet each other. How to present / introduce each other using basic verbs and vocabulary

Course Contents:

Module I

A brief history of Spain, Latin America, the language, the culture...and the relevance of Spanish language intoday's global context.

Introduction to alphabets

Module II

Introduction to 'Saludos' (How to greet each other. How to present / introduce each other). Goodbyes (despedidas)
The verb *llamarse* and practice of it.

Module III

Concept of Gender and Number

Months of the years, days of the week, seasons. Introduction to numbers 1-100, Colors, Revision of numbers and introduction to ordinal numbers.

Module IV

Introduction to SER and ESTAR (both of which mean To Be). Revision of 'Saludos' and 'Llamarse'. Some adjectives, nationalities, professions, physical/geographical location, the fact that spanish adjectives have to agree with gender and number of their nouns. Exercises highlighting usage of Ser and Estar.

Module V

Time, demonstrative pronoun (Este/esta, Aquel/aquella etc)

Module VI

Introduction to some key AR /ER/IR ending regular verbs.

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Español, En Directo I A
- Español Sin Fronteras

JAPANESE - I

Course Code: FLJ 101 C: 02

Course Objective:

To enable the students to learn the basic rules of grammar and Japanese language to be used in daily life that will later help them to strengthen their language.

Course Contents:

Module I: Salutations

Self introduction, Asking and answering to small general questions

Module II: Cardinal Numbers

Numerals, Expression of time and period, Days, months

Module III: Tenses

Present Tense, Future tense

Module IV: Prepositions

Particles, possession, Forming questions

Module V: Demonstratives

Interrogatives, pronoun and adjectives

Module VI: Description

Common phrases, Adjectives to describe a person

Module VII: Schedule

Time Table, everyday routine etc.

Module VIII: Outings

Going to see a movie, party, friend's house etc.

Learning Outcome

> Students can speak the basic language describing above mentioned topics

Methods of Private study /Self help

Handouts, audio-aids, and self-do assignments and role-plays will support classroom teaching

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

Text:

• Teach yourself Japanese

References:

• Shin Nihongo no kiso 1

Course Code: FLC 101 C: 02

Course Objective:

There are many dialects spoken in China, but the language which will help you through wherever you go is Mandarin, or Putonghua, as it is called in Chinese. The most widely spoken forms of Chinese are Mandarin, Cantonese, Gan, Hakka, Min, Wu and Xiang. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practicalskills and nurturing them to interact with a Chinese person.

Course Contents:

Module I

Show pictures, dialogue and retell. Getting to know each other.

Practicing chart with Initials and Finals. (CHART – The Chinese Phonetic Alphabet Called "Hanyu Pinyin" inMandarin Chinese.) Practicing of Tones as it is a tonal language. Changes in $3^{\rm rd}$ tone and Neutral Tone.

Module II

Greetings

Let me Introduce
The modal particle "ne".
Use of Please 'qing" – sit, have tea etc.
A brief self introduction – Ni hao ma?
Zaijian!Use of "bu" negative.

Module III

Attributives showing
possession How is your
Health? Thank you Where
are you from?
A few Professions like – Engineer, Businessman, Doctor, Teacher,
Worker.Are you busy with your work?
May I know your name?

Module IV

Use of "How many" – People in your family? Use of "zhe" and "na".

Use of interrogative particle "shenme", "shui", "ma" and "nar". How to make interrogative sentences ending with "ma".

Structural particle "de".

Lies of "Nin" when and where to use and with whom. Lies

Use of "Nin" when and where to use and with whom. Use of guixing. Use of verb "zuo" and how to make sentences with it.

Module V

Family structure and
Relations. Use of "you" –
"mei you".
Measure words
Days and
Weekdays.
Numbers.

Maps, different languages and Countries.

Examination Scheme:

Components	CT1	CT2	С	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation I – Interaction/Conversation Practice

Text & References:

"Elementary Chinese Reader Part I" Lesson 1-10

APPLIED MATHEMATICS – II

Course Code: AM 201 L:03 T:01 C: 04

Course Objective:

The knowledge of Mathematics is necessary for a better understanding of almost all the Engineering and Science subjects. Here our intention is to make the students acquainted with the concept of basic topics from Mathematics, which they need to pursue their Engineering degree in different disciplines.

Course Contents:

Module I: Linear Algebra

Hermitian and Skew Hermitian Matrix, Unitary Matrix, Orthogonal Matrix, Elementary Row Transformation, Reduction of a Matrix to Row Echelon Form, Rank of a Matrix, Consistency of Linear Simultaneous Equations, Gauss Elimination Method, Gauss-Jordan Method, Eigen Values and Eigen Vectors of a Matrix, Caley- Hamilton Theorem, Diagonalization of a Matrix, Vector Space, Linear Independence and Dependence of Vectors, Linear Transformations.

Module II: Infinite Series

Definition of Sequence, Bounded Sequence, Limit of a Sequence, Series, Finite and Infinite Series, Convergence and Divergence of Infinite series, Cauchy's Principle of Convergence, Positive Term Infinite Series, Comparison test, D'Alembert's Ratio test. Raabe's Test, Cauchy's nth root Test. Logarithmic Test, Alternating Series, Leibnitz's Test, Absolute and conditional convergence, Uniform Convergence, Power Series and its Interval of Convergence.

Module III: Complex Analysis

De Moivre's Theorem and Roots of Complex Numbers, Logarithmic Functions, Circular, Hyperbolic Functions and their Inverses.

Functions of a Complex Variables, Limits, Continuity and Derivatives, Analytic Function, Cauchy-RiemannEquations (without proof), Harmonic Function, Harmonic Conjugates, Conformal Mapping, Bilinear Transformations, Complex Line Integral, Cauchy Integral Theorem, Cauchy Integral Formula, Derivative of Analytic Function, Power Series, Taylor Series, Laurent Series, Zeroes and Singularities, Residues, Residue

Theorem, Evaluation of Real Integrals of the	$F(\cos\Box,$	$\sin\square$) $d\square$ a	$\int_{-\infty}^{\infty} f(x) dx$.
Form			
	0		$\overline{F(x)}$

Module IV: Statistics and Probability

Moments, Skewness, Kurtosis, Random Variables and Probability Distribution, Mean and Variance of a Probability Distribution, Binomial Distribution, Poisson Distribution and Normal Distribution.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

- Engineering Mathematics by Erwin Kreyszig.
- Engineering Mathematics by R.K. Jain and S.R.K. Iyengar.
- Higher Engineering Mathematics by H.K. Dass.
- Engineering Mathematics by B.S. Grewal.
- Differential Calculus by Shanti Narain.
- Integral Calculus by Shanti Narain.
- Linear Algebra- Schaum Outline Series.

APPLIED PHYSICS - II - MODERN PHYSICS

Course Code: AP 202 L:02 T:01 C: 03

Course Objective:

Aim of this course is to introduce the students to fundamentals of graduate level physics which form the basis of all applied science and engineering

Course Contents:

Module I: Special Theory of Relativity

Michelson-Morley experiment, Importance of negative result, Inertial & non-inertial frames of reference, Einstein's postulates of Special theory of Relativity, Space-time coordinate system, Relativistic Space Time transformation (Lorentz transformation equation), Transformation of velocity, Addition of velocities, Length contraction and Time dilation, Mass-energy equivalence (Einstein's energy mass relation) & Derivation of Variation of mass with velocity,

Module II: Wave Mechanics

Wave particle duality, De-Broglie matter waves, phase and group velocity, Heisenberg uncertainty principle, wave function and its physical interpretation, Operators, expectation values. Time dependent & time independent Schrödinger wave equation for free & bound states, square well potential (rigid wall), Step potential.

Module III: Atomic Physics

Vector atom model, LS and j-j coupling, Zeceman effect (normal & anomalous), Paschen-Bach effect, X-ray spectra and energy level diagram, Moseleys Law, Lasers – Einstein coefficients, conditions for light amplification, population inversion, optical pumping, three level and four level lasers, He-Ne and Ruby laser, Properties and applications of lasers.

Module IV: Solid State Physics

Sommerfield's free electron theory of metals, Fermi energy, Introduction to periodic potential & Kronig-Penny model (Qualitative) Band Theory of Solids, Semi-conductors: Intrinsics and Extrinsic Semiconductors, photoconductivity and photovotaics, Basic aspects of Superconductivity, Meissner effect.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

- Concept of Modern Physics, A. Beiser
- Applied Physics II, Agarawal & Goel
- Solid State Physics, S. O. Pallai
- Physics of Atom, Wehr & Richards

OBJECT ORIENTED PROGRAMMING USING C++

Course Code: BCS 203 L:02 T:01 C: 03

Course Objective:

The objective of this module is to introduce object oriented programming. To explore and implement the various features of OOP such as inheritance, polymorphism, Exceptional handling using programming language C++. After completing this course student can easily identify the basic difference between the programming approaches like procedural and object oriented.

Course Contents:

Module I: Introduction

Review of C, Difference between C and C++, Procedure Oriented and Object Oriented Approach. Basic Concepts: Objects, classes, Principals like Abstraction, Encapsulation, Inheritance and Polymorphism. Dynamic Binding, Message Passing. Characteristics of Object-Oriented Languages. Introduction to Object-Oriented Modeling techniques (Object, Functional and Dynamic Modeling).

Module II: Classes and Objects

Abstract data types, Object & classes, attributes, methods, C++ class declaration, Local Class and Global Class, State identity and behaviour of an object, Local Object and Global Object, Scope resolution operator, Friend Functions, Inline functions, Constructors and destructors, instantiation of objects, Types of Constructors, Static Class Data, Array of Objects, Constant member functions and Objects, Memory management Operators.

Module III: Inheritance

Inheritance, Types of Inheritance, access modes – public, private & protected, Abstract Classes, Ambiguity resolution using scope resolution operator and Virtual base class, Aggregation, composition vs classification hiérarchies, Overriding inheritance methods, Constructors in derived classes, Nesting of Classes.

Module IV: Polymorphism

Polymorphism, Type of Polymorphism – Compile time and runtime, Function Overloading, Operator Overloading (Unary and Binary) Polymorphism by parameter, Pointer to objects, this pointer, Virtual Functions, pure virtual functions.

Module V: Strings, Files and Exception Handling

Manipulating strings, Streams and files handling, formatted and Unformatted Input output. Exception handling, Generic Programming – function template, class Template Standard Template Library: Standard Template Library, Overview of Standard Template Library, Containers, Algorithms, Iterators, Other STL Elements, The Container Classes, General Theory of Operation, Vectors.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

Text & References:

Text:

- A.R. Venugopal, Rajkumar, T. Ravishanker "Mastering C++", TMH, 1997
- R. Lafore, "Object Oriented Programming using C++", BPB Publications, 2004.
- "Object Oriented Programming with C++" By E. Balagurusamy.
- Schildt Herbert, "C++: The Complete Reference", Wiley DreamTech, 2005.

References:

- Parasons, "Object Oriented Programming with C++", BPB Publication, 1999.
- Steven C. Lawlor, "The Art of Programming Computer Science with C++", Vikas Publication, 2002.
- Yashwant Kanethkar, "Object Oriented Programming using C++", BPB, 2004

ENGINEERING MECHANICS

Course Code: BME 204 L:02 T:01 C: 03

Course Objective:

Objective of this course is to provide fundamental knowledge of force system and its effect on the behaviour of the bodies that may be in dynamic or in static state. It includes the equilibrium of different structures like beams, frames, truss etc and the force transfer mechanism in the different components of a body under given loading condition.

Course Contents:

Module I: Force system & Structure

Free body diagram, Equilibrium equations and applications. Plane truss, perfect and imperfect truss, assumption in the truss analysis, analysis of perfect plane trusses by the method of joints, method of section.

Module II: Friction

Static and Kinetic friction, laws of dry friction, co-efficient of friction, angle of friction, angle of repose, cone of friction, friction lock, efficiency of screw jack, transmission of power through belt, Ratio of tension, centrifugal tension, condition of maximum power transmission., Initial tension

Module III: Distributed Force

Determination of center of gravity, center of mass and centroid by direct integration and by the method of composite bodies, area moment of inertia by direct integration and composite bodies method, radius of gyration, parallel axis theorem, perpendicular axis theorem, polar moment of inertia.

Module IV: Stress Strain Analysis

Simple stress and strain: introduction, normal shear, and stresses-strain diagrams for ductile and brittle materials. Elastic constants, Strain Energy, Properties of material-strength, elasticity, stiffness, malleability, ductility, brittleness, hardness and plasticity etc; Concept of stress and strain.

Examination Scheme:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

MTE- Mid-term Examination

- □ D.S. Kumar (2009) Engineering Mechanics S. K. Kataria & Sons
 □ Dr. R.K. Bansal (2008) Engineering Mechanics Laxmi Publication
 □ J. L. Meriam, L. G. Kraige (2012) Engineering Mechanic-Don Fowley
- L Timoshenko, Engineering Mechanics, McGraw Hill
- R. S. Khurmi, Engineering Mechanics, S. Chand Publication
- H. Shames & G. K. M. Rao, Engineering Mechanics, Pearson Education, 2006

ENGINEERING GRAPHICS

Course Code: BME 205 L:01 C: 01

Course Contents:

Module 1: Scales & Curves

Representative factor, Plain Scales, Diagonal Scales, Comperative Scales and Scale of chords. Construction of ellipse, Parabola, Hyperbola, Cycloid, Epicycloid, Hypocycloid, Involutes and Spirals by various methods.

Module 2: Projection of Points & Straight lines

Projection of points, Projection of straight lines. True inclinations and true length of straight lines.

Module 3: Projection of planes and solids

Projection of circle, triangle, polygons, polyhedrons, pyramids, cylinders and cones in different positions.

Module 1: Section of solids and Isometric projections

Section of right solids by normal and inclined planes, Orthographic projection, first angle & third angle projection. Isometric scale, Isometric axes, Isometric projection from orthographic drawing.

Examination Scheme:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

MTE- Mid-term Examination

- □ Engineering Graphics − Basant Agrawal and Dr. C. M. Agrawal, Tata McGraw-Hill Publishing Company Ltd.
- Engineering Drawing − by N. D. Bhatt
- □ Engineering Drawing and Graphics by Veenugopal
- L Engineering Drawing − by T. Jeyopoovan

APPLIED PHYSICS LAB - II

Course Code: AP 222 P:02 C: 01

List of Experiments:

- 1. To determine the wavelength of prominent lines of mercury spectrum using plane transmission grating.
- 2. To determine the thickness of a given wire by Wedge method.
- 3. To determine the wavelength of He-Ne laser light using single slit.
- 4. To determine the frequency of an electrically maintained tunning fork by Melde's method.
- 5. To study the variation of magnetic field along the axis of Helmholtz coil and to find out reduction factor.
- 6. To draw the V I characteristics of a forward and reverse bias PN junction diode.
- 7. To determine the frequency of AC mains using sonometer.
- 8. To determine the energy band-gap of Germanium crystal using four probes method.
- 9. To draw V I characteristics of a photocell and to verify the inverse square law of radiation.
- 10. To determine the acceleration due to gravity ('g') using Keter's reversible pendulum.
- 11. To study the characteristics of photo voltaic cell (solar cell).

Examination Scheme:

IA				E	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

OBJECT ORIENTED PROGRAMMING USING C++ LAB

Course Code: BCS 223 P:02 C: 01

Software Required: Turbo C++

Course Contents:

• Creation of objects in programs and solving problems through them.

- Different use of private, public member variables and functions and friend functions.
- Use of constructors and destructors.
- Operator overloading
- Use of inheritance in and accessing objects of different derived classes.
- Polymorphism and virtual functions (using pointers).
- File handling.

Examination Scheme:

IA			E	E	
A	PR	LR	V	PR	V
5	10	10	5	35	35

ENGINEERING MECHANICS LAB

Course Code: BME 224 P:02 C: 01

Course Contents:

- To verify the law of Force Polygon.
- To verify the law of Moments using Parallel Force apparatus. (Simply supported type)
- To determine the co-efficient of friction between wood and various surface (like Leather, Wood, Aluminum) on an inclined plane.
- To find the forces in the members of Jib Crane.
- To determine the mechanical advantage, Velocity ratio and efficiency of a screw jack.
- To determine the mechanical advantage, Velocity ratio and Mechanical efficiency of the Wheel and Axle
- To determine the MA, VR, \bot of Worm Wheel (2-start)
- Verification of force transmitted by members of given truss.
- To verify the law of moments using Bell crank lever
- To find CG and moment of Inertia of an irregular body using Computation method

Examination Scheme:

]	IA	EE		
A	PR	LR	V	PR	V
5	10	10	5	35	35

ENGINEERING GRAPHICS LAB

Course Code: BME 225 P:02 C: 01

List of Experiments:

- L Sketching and drawing of scale & Curve
- L Sketching and drawing of Cycloidal Curve
- L Sketching and drawing of Involute & Spirals
- L Sketching and drawing of points & line
- L Sketching and drawing of projection of solids
- L Sketching and drawing of intersection of surfaces
- L Sketching and drawing of development of surfaces
- L Sketching and drawing of orthographic and isometric projection

Examination Scheme:

]	IA		H.	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

Note: IA –Internal Assessment, EE- External Exam, PR- Performance, LR – Lab Record, V – Viva.

- M.B. Shah & B.C. Rana, Engineering Drawing, Pearson Education, 2007
- PS Gill, Engineering Drawing, Kataria Publication
- ND Bhatt, Engineering Drawing, Charotar publications
- N Sidheshwar, Engineering Drawing, Tata McGraw Hill
- CL Tanta, Mechanical Drawing, "Dhanpat Rai"

ENGLISH

Course Code: BCS 201 C: 03

Course Objective:

The course is intended to give a foundation of English Language. The literary texts are indented to help students to inculcate creative & aesthetic sensitivity and critical faculty through comprehension, appreciation and analysis of the prescribed literary texts. It will also help them to respond form different perspectives.

Course Contents:

Module I: Vocabulary

Use of Dictionary

Use of Words: Diminutives, Homonyms & Homophones

Module II: Essentials of Grammar - I

Articles Parts of SpeechTenses

Module III: Essentials of Grammar - II

Sentence Structure Subject -Verb agreementPunctuation

Module IV: Communication

The process and importance
Principles & benefits of Effective Communication

Module V: Spoken English Communication

Speech Drills Pronunciation and accentStress and Intonation

Module VI: Communication Skills - I

Developing listening skills Developing speaking skills

Module VII: Communication Skills - II

Developing Reading SkillsDeveloping writing Skills

Module VIII: Written English communication

Progression of Thought/ideasStructure of Paragraph Structure of Essays

Module IX: Short Stories

Of Studies, by Francis Bacon Dream Children, by Charles Lamb The Necklace, by Guy de MaupassantA Shadow, by R.K. Narayan Glory at Twilight, Bhabani Bhattacharya

Module X: Poems

All the Worlds a Stage
To Autumn
O! Captain, My Captain.
Where the Mind is Without Fear
TagorePsalm of Life

Keats Walt Whitman Rabindranath H.W. Longfellow

Shakespeare

Examination Scheme:

Components	A	CT	HA	EE
Weightage (%)	05	15	10	70

- Madhulika Jha, Echoes, Orient Long Man.
- Ramon & Prakash, Business Communication, Oxford.
- Sydney Greenbaum Oxford English Grammar, Oxford.
- Successful Communications, Malra Treece (Allyn and Bacon).
- Effective Technical Communication, M. Ashraf Rizvi.

BEHAVIOURAL SCIENCE - II (PROBLEM SOLVING AND CREATIVE THINKING)

Course Code: BSS 204 C: 01

Course Objective:

To enable the students:

- Understand the process of problem solving and creative thinking.
- Facilitation and enhancement of skills required for decision-making.

Course Contents:

Module I: Thinking as a tool for Problem Solving

What is thinking: The Mind/Brain/Behaviour

Critical Thinking and Learning:

Making Predictions and

ReasoningMemory and Critical

Thinking Emotions and Critical

Thinking Thinking skills

Module II: Hindrances to Problem Solving Process

Perceptio

n

Expressio

nEmotion

Intellect

Work environment

Module III: Problem Solving

Recognizing and Defining a problem

Analyzing the problem (potential

causes)Developing possible

alternatives Evaluating Solutions

Resolution of

problem

Implementation

Barriers to problem solving:

Perceptio

n

Expressio

nEmotion

Intellect

Work environment

Module IV: Plan of Action

Construction of POA

Monitoring

Reviewing and analyzing the outcome

Module V: Creative Thinking

Definition and meaning of creativity

The nature of creative thinking

Convergent and Divergent thinking

Idea generation and evaluation (Brain

Storming)Image generation and evaluation

Debating

The six-phase model of Creative Thinking: ICEDIP model

Module VI: End-of-Semester Appraisal

Viva based on personal journal

Assessment of Behavioural change as a result of

trainingExit Level Rating by Self and Observer

Examination Scheme:

Components	SAP	A	Mid Term Test (CT)	VIVA	Journal for Success (JOS)
Weightage (%)	20	05	20	30	25

Course Code: FLF 201 C: 02

Course Objective:

To enable the students to overcome the fear of speaking a foreign language and take position as a foreignerspeaking French.

To make them learn the basic rules of French Grammar.

Course Contents:

Module A: pp.38 – 47: Unité 3: Object if 3, 4, 5. 6

Module B: pp. 47 to 75 Unité 4, 5

Contenu lexical:

Unité 3: Organiser son temps

- 1. donner/demander des informations sur un emploi du temps, un horaire SNCF Imaginer un dialogue
- 2. rédiger un message/ une lettre pour ...
- i) prendre un rendez-vous/ accepter et confirmer/ annuler
 ii) inviter/accepter/refuser
- 3. Faire un programme d'activités imaginer une conversation téléphonique/un dialoguePropositions- interroger, répondre

Unité 4: Découvrir son environnement

- 1. situer un lieu
- 2. s'orienter, s'informer sur un itinéraire.
- 3. Chercher, décrire un logement
- 4. connaître les rythmes de la vie

Unité 5: s'informer

- 1. demander/donner des informations sur un emploi du temps passé.
- 2. donner une explication, exprimer le doute ou la certitude.
- 3. découvrir les relations entre les mots
- 4. savoir s'informer

Contenu grammatical:

- 1. Adjectifs démonstratifs
- 2. Adjectifs possessifs/exprimer la possession à l'aide de :

i. « de » ii. A+nom/pronom disjoint

- Conjugaison pronominale négative, interrogative construction à l'infinitif
- 4. Impératif/exprimer l'obligation/l'interdiction à l'aide de « il faut.... »/ «il ne faut pas... »
- 5. passé composé
- 6. Questions directes/indirectes

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C-Project+Presentation

I – Interaction/Conversation Practice

Text & References:

• le livre à suivre : Campus: Tome 1

Course Code: **FLG 201** C: 02

Course Objective:

To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.

To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany

Introduction to Grammar to consolidate the language base learnt in Semester I

Course Contents:

Module I: Everything about Time and Time periods

Time and times of the

day. Weekdays, months,

seasons.

Adverbs of time and time related prepositions

Module II: Irregular verbs

Introduction to irregular verbs like to be, and others, to learn the conjugations of the same, (fahren, essen, lessen, schlafen, sprechen und ähnliche).

Module III: Separable verbs

To comprehend the change in meaning that the verbs undergo when used as such Treatment of such verbs with separable prefixes

Module IV: Reading and comprehension

Reading and deciphering railway schedules/school time tableUsage of separable verbs in the above context

Module V: Accusative case

Accusative case with the relevant articles

Introduction to 2 different kinds of sentences – Nominative and Accusative

Module VI: Accusative personal pronouns

Nominative and accusative in comparison

Emphasizing on the universal applicability of the pronouns to both persons and objects

Module VII: Accusative prepositions

Accusative propositions with their use Both theoretical and figurative use

Module VIII: Dialogues

Dialogue reading: 'In the market place' 'At the Hotel'

Examination Scheme:

Components	CT1	CT2	С	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs

Course Code: FLS 201 C: 02

Course Objective:

To enable students acquire more vocabulary, grammar, Verbal Phrases to understand simple texts and startdescribing any person or object in Simple Present Tense.

Course Contents:

Module I

Revision of earlier modules.

Module II

Some more AR/ER/IR verbs. Introduction to root changing and irregular AR/ER/IR ending verbs

Module III

More verbal phrases (eg, Dios Mio, Que lastima etc), adverbs (bueno/malo, muy, mucho, bastante, poco). Simple texts based on grammar and vocabulary done in earlier modules.

Module IV

Possessive pronouns

Module V

Writing/speaking essays like my friend, my house, my school/institution, myself....descriptions of people, objects etc, computer/internet related vocabulary

Examination Scheme:

Components	CT1	CT2	С	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Español, En Directo I A
- Español Sin Fronteras

Course Code: FLC 201 C: 02

Course Objective:

Chinese is a tonal language where each syllable in isolation has its definite tone (flat, falling, rising and rising/falling), and same syllables with different tones mean different things. When you say, "ma" with a third tone, it mean horse and "ma" with the first tone is Mother. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I

Drills

Practice reading aloud

Observe Picture and answer the

question. Tone practice.

Practice using the language both by speaking and by taking

notes. Introduction of basic sentence patterns.

Measure words.

Glad to meet

you.

Module II

Where do you live?

Learning different

colors.

Tones of "bu"

Buying things and how muchit

costs?Dialogue on change of

Money.

More sentence patterns on Days and Weekdays.

How to tell time. Saying the units of time in Chinese. Learning to say useful phrases like – 8:00, 11:25, 10:30

P.M. everyday, afternoon, evening, night, morning 3:58, one hour, to begin, to end

..... etc. Morning, Afternoon, Evening, Night.

Module III

Use of words of location like-li, wais

hang, xiaFurniture – table, chair, bed,

bookshelf,.. etc.

Description of room, house or hostel room.. eg what is placed where and how many things are

there in it?Review Lessons – Preview Lessons.

Expression 'yao", "xiang" and "yaoshi"

(if). Days of week, months in a year etc.

I am learning Chinese. Is Chinese difficult?

Module IV

Counting from 1-1000

Use of "chang-chang".

Making an Inquiry – What time is it now? Where is the Post

Office? Days of the week. Months in a year.

Use of Preposition – "zai", "gen".

Use of interrogative pronoun – "duoshao" and

"ji". "Whose"??? Sweater etc is it?

Different Games and going out for exercise in the morning.

Module V

The verb "qu"

- Going to the library issuing a book from the library
- Going to the cinema hall, buying tickets

- Going to the post office, buying stamps
- Going to the market to buy things.. etc
- Going to the buy clothes Etc.

Hobby. I also like swimming.

Comprehension and answer questions based on it.

Examination Scheme:

Components	CT1	CT2	С	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation I – Interaction/Conversation Practice

Text & References:

"Elementary Chinese Reader Part I" Lesson 11-20

NUMERICAL ANALYSIS AND PROGRAMMING

Course Code: BTM 301 L:03 C: 03

Course Objective:

This course deals with the techniques of numerical analysis, which gives the solution to applied problem when ordinary analytical method fails. Emphasis is given on computer programming also so that the given techniques can be used in design of engineering and scientific problems.

Course Contents:

Module I: Solution of Algebraic and Transcendental Equation

Error in a series approximation, Bisection Method, Iteration method, Method of false position, Newton-Raphson method

Solutions of Simultaneous equation

Gauss elimination method, Jacobi iteration method, Gauss Seidal method

Module II: Interpolation

Finite Differences, Difference tables

Polynomial Interpolation: Newton's forward and backward formula Central Difference Formulae: Gauss forward and backward formula.

Interpolation with unequal intervals: Lagrange's Interpolation, Newton Divided difference formula

Module III: Numerical Integration and Differentiation

Introduction, Numerical differentiation Numerical Integration: Trapezoidal rule, Simpson's 1/3 and 3/8 rules.

Module IV: Solution of differential Equations

Euler's Method, Runga-Kutta Methods.

Module V: Statistical Computation

Frequency chart, Curve fitting by method of least squares, fitting of straight lines, polynomials, exponential curves etc, Data fitting with Cubic splines.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

Text & References:

Text:

- Rajaraman V, "Computer Oriented Numerical Methods", Pearson Education
- Gerald & Whealey, "Applied Numerical Analyses", AW
- Jain, Iyengar and Jain, "Numerical Methods for Scientific and Engineering Computations", New Age Int.
- Grewal B S, "Numerical methods in Engineering and Science", Khanna Publishers, Delhi

References:

- T Veerarajan, T Ramachandran, "Theory and Problems in Numerical Methods, TMH
- Pradip Niyogi, "Numerical Analysis and Algorithms", TMH

THERMODYNAMICS

Course Code: BTM 302 L:2,T:1, C:03

Course Objective:

Objective of this course is to impart in depth understanding of the principles of thermodynamics and heat transfer. This course also helps students understand the application of basic fluid mechanics, thermodynamic, and heat transfer principles and techniques, including the use of empirical data, to the analysis of representative fluid and thermal energy components and systems encountered in the practice of electrical, electronic, industrial, and related disciplines of engineering.

Course Contents:

Module I: Basic concepts of thermodynamics

Thermodynamic system, intensive and extensive properties, cyclic process, Zeroth Law of Thermodynamics, Work and heat, Flow work, First law of thermodynamics, Mechanical equivalent of heat, internal energy, Analysis of non-flow system, flow process and control volume, steady flow, energy equation, flow processes

Module II: Second Law of Thermodynamics and Entropy

Heat Engine, heat pump, Kelvin Planck and Clausius statement of Second Law of Thermodynamics, Perpetual motion machine, Reversible cycle- Carnot Cycle, Clausius inequality, entropy, Principle of entropy increase, concepts of availability, irreversibility, Carnot theorem, Max-well-relation,

Module III: Air-Standard Cycles

Carnot cycle, Otto cycle, Diesel cycle, Dual cycle, Stirling cycle, Erricsson cycle, Brayton cycle; Reversed Carnot cycle.

Module IV: Steam

Use of steam tables, wet steam, superheat steam, different processes of vapour, Mollier Diagram, steam Nozzle, calorimeter.

Module V : Compressors

Introduction, Types of compressors, Isothermal efficiency, adiabatic efficiency, clearance volume, volumetric efficiency, and multi-stage compression with intercooling.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

Text & References:

Text:

- P.K. Nag, "Engineering Thermodynamics", Tata McGraw Hill
- Incropera, "Engineering Thermodynamics", John Willy

References:

- Engel, T. and Reid, P., Thermodynamics, Statistical Thermodynamics & Kinetics, Pearson Education, 2006
- Cengel & Boles, "Thermodynamics", Tata McGraw Hill.
- Sonntag/Vanhylene, Fundamentals of Thermodynamics, Wiley
- Rahul Gupta, Engineering Thermodynamics, Asian Books P. Ltd.
- Y.V.C. Rao, Engineering Thermodynamics, Khanna Publications
- Onkar Singh, Applied Thermodynamics, New Age Publications.
- Dhomkundwar Kothandaraman, "A Course in Thermal Engineering", Dhanpat Rai Publications

MECHANICS OF SOLIDS

Course Code: BTM 303 L:02,T:01,C:03

Course Objective:

The objective of this course is to make the students understand the concept of stress and strain in different types of structure/machine under different loading conditions. The course also covers the simple and compound stresses due to forces, stresses and deflection in beams due to bending, torsion in circular section, strain energy, different theories of failure, stress in thin cylinder thick cylinder and spheres due to external and internal pressure.

Course Contents:

Module I: Simple stresses and strains:

Concept of stress and strain; Hooke's law, Young's modulus, Poisson ratio, stress at a point, stress and strains in bars subjected to axial loading. Modulus of elasticity, stress produced in compound bars subject to axial loading. Temperature stress and strain calculations due to applications of axial loads and variation of temperature in single and compound walls.

Module II: Compound stress and strains:

The two dimensional system; stress at a point on a plane, principal stresses and principal planes; Mohr's circle of stress. Graphical and Analytical methods for stresses on oblique section of body. Shear force and bending moment diagrams for cantilever, simply supported and overhanging beams.

Module III: Bending & Shear Stress:

Theory of bending stresses in beams due to bending, assumptions in the simple bending theory, derivation of formula: its application to beams of rectangular, circular and channel sections, composite beams, Shear stress in symmetric and Unsymmetric sections, bending and shear stresses in composite beams.

Module IV: Torsion& Spring:

Derivation of torsion equation and its assumptions. Applications of the equation of the hollow and solid circular shaft torsional rigidity, combined torsion and bending of circular shafts, principal stress and maximum shear stress under combined loading of bending and torsion, analysis of close-coiled-helical springs.

Module V: Thin cylinders and spheres:

Derivation of formulae and calculation of hoop stress, longitudinal stress in a cylinder and sphere subjected to internal pressure.

Module VI: Columns and struts:

Columns and failure of columns, Euler's formulas; Rankine-Gordon's formula, Johnson's empirical formula for axially loaded columns and their applications.

Module VII: Slope and deflection:

Relationship between moment, slope and deflection, Mohr's theorem; Moment area method; method of integration; Macaulay's method, Calculate slope and deflection for the Cantilever beams, Simply supported beams with or without overhanging under concentrated loads, uniformly distributed loads or combination of concentrated and uniformly distributed loads by using these three methods.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weight age (%)	10	5	15	70

- Jindal U.C., "Strength of Materials", Galgotia Publication, New Delhi, 1998.
- Ryder G.H., "Strength of Materials", Macmillan, Delhi, 2003.
- R.K. Bansal, "Strength of Materials", Laxmi Publication, New Delhi, 2001.
- Sadhu Singh, "Strength of Materials", Khanna Publishers, New Delhi, 2000.
- Timoshenko S.P., "Elements of Strength of Materials", East-West affiliated, New Delhi, 2000.

- Hibbler R.C., "Mechanics of Materials", Prentice Hall, New Delhi, 1994.
- Popov Eger P., "Engg. Mechanics of solids", Prentice Hall, New Delhi, 1998.
- Fenner, Roger. T, "Mechanics of Solids", U.K. B.C. Publication, New Delhi, 1990.
- Srinath L.S. et.al., "Strength of Materials", McMillan, New Delhi,2001

FLUID MECHANICS

Course Code: BTM 304 L:02,T:01,C:03

Course Objective:

The objective of Fluid Mechanics subject is that students should understand the, properties of fluids, pressure measurement devices, hydraulic forces on surfaces, bouncy and flotation in fluids, kinematics and static behaviour of fluids, dimension and model analysis, laminar and turbulent flow, flow through pipes and orifices, boundary layer theory.

Course Contents:

Module I: Fluid Properties and Fluid Statics

Newtonian and Non-Newtonian Fluids; Viscosity; Incompressible and compressible fluids, compressibility. Forces on plane surfaces, forces on curved surfaces, buoyant forces, and stability of floating bodies, metacentre and metacentre height.

Module II: Kinematics of Fluid Motion

Steady and unsteady flow; uniform and non-uniform flow; Laminar and turbulent flow; streamline, path line and streak line; continuity equation, irrotational and rotational flow, velocity potential and stream function, vortex flow, free and forced vortex, sink and source flow.

Module III: Dynamics of Fluid Flow

Euler's equation of motion and its integration to yield Bernoulli's equation, its practical applications – Pilot tube, Venturi meter; steady flow momentum equation, force exerted on a pipe bend. Measurement of flow using Venturi meter, orifice meter, Pitot tube, measurement of flow in open channels – rectangular, triangular

Module IV: Dimensional Analysis and Principles of Similarity

Buckingham π -Theorem and its applications, Geometric, Kinematics and Dynamic similarity; Dimensionless numbers-Reynolds, Froude, Euler, Mach, Weber Number and their significance.

Module V: Laminar and Turbulent Flow

Reynold's experiment, critical velocity, steady laminar flow through a circular tube, flow between parallel plates. Transition from laminar to turbulent flow, courses of turbulence, velocity distribution law near a solid boundary, velocity distribution in rough pipes, Hazen – Williams's formula. Boundary layer theory.

Module VI: Analysis of Pipe Flow

Energy losses, minor losses in pipe lines, concept of equivalent length, flow between two reservoirs, and multiple pipe systems – in series and parallel, siphon.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weight age (%)	10	5	15	70

Text & References:

Text:

- R.K. Bansal, "Fluid Mechanics & Hydraulic Machines", Laxmi Publications (P) Ltd., 2002.
- Gupta, S. C., Fluid Mechanics and Hydraulic Machines, Pearson Education, 2007
- D.S. Kumar, "Fluid Mechanics and Fluid Power Engineering", S.K. Kataria & Sons, 2000.

References:

- F. M. White, Introduction to Fluid Mechanics, McGraw Hill
- I.H. Shames, "Mechanics of Fluids", Tata McGraw Hill
- Douglas, J. F., Gasiorek, J.M. and Swaffield, J., Fluid Mechanics, Pearson Education, 4/e, 2006
- V.L. Streeter and E.B. Wylie, "Fluid Mechanics", Tata McGraw Hill
- Massey B S, Mechanics of Fluids, Van Nostrand Reinhold Co

ELECTRONICS

Course Code: BTM 305 L:02, C:02

Course Objective:

Basic knowledge of Electronics is very essential for an engineer, it will help in building up the electronics & automation skills in Mechanical Engineers.

Course Contents:

Module I

Review of Diodes LED, Zener and Tunnel Diode and their characteristics, Applications of diodes-Rectifiers (Half and full wave, Bridge).

Module II

BJT-construction and characteristics, Transistor as an amplifier, CE, CB and CC configurations, Introduction to MOSFET.

Module III

Coupling, RC coupled Amplifiers, Transformer coupling,, Introduction to feedback-Positive and negative, Introduction to oscillators.

Module IV

Introduction to OPAMP characteristics and specifications, OPAMP as adder, subtractor. Integrator, differentiator.

Module V

Introduction to digital electronics, logic gates, basic laws and theorems of Boolean algebra, Introduction to Combinational Circuits, Concept of memory cell and introduction to Flip-flops R S, J K, D and T.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weight age (%)	10	5	15	70

Text & References:

Text:

- Boylestead & Neshlesky, "Electronics Devices & Circuits". PHI
- Millman & Halkias, "Integrated Electronics", TMH.

References:

- Schilling & Belove "Electronics".
- R P Jain, Digital Electronics.

MACHINE DRAWING LAB

Course Code: BTM 320 P:02, C:01

Course Contents:

Free-Hand Sketching & Shaft Scale Drawing

Isometric views from Orthographic Projections of Machine Components. Components like cotter joint, knuckle joint; rivets and riveted joints; couplings; flywheels, pulleys, bush bearings, pedestal and footstep bearings,

Assembly Machine Drawing: Basic concept, plotting technique, assembly and blow up of parts, bill of materials, product data. Assembly of IC engine parts - piston and connecting rods; lath machine parts.

Examination Scheme:

	IA				EE .
A	A PR LR V				V
5	10	10	5	35	35

Note: IA –Internal Assessment, EE- External Exam, PR- Performance, LR – Lab Record, V – Viva

- Pohit, G and Gosh, G., Machine Drawing with Auto CAD, Pearson Education, 2007
- PS Gill, Machine Drawing, S. Chand.
- ND Bhatt, Machine Drawing, Charotar publications
- N Sidheshwar, Machine Drawing, Tata McGraw Hill
- CL Tanta, Mechanical Drawing, "Dhanpat Rai"

PROGRAMMING LAB – I (NUMERICAL ANALYSIS)

Course Code: BTM 321 P:02 C:01

Software Required: Turbo C/C++

Course Contents:

Assignments will be provided for the following:

1. Analysis of various numerical and statistical techniques

Examination Scheme:

	IA				E
A	PR	PR	V		
5	10	10	5	35	35

THERMODYNAMICS LAB

Course Code: BTM 322 P:2, C:01 Course Contents:

- To study about the different Boilers.
- To study different types of Boilers mountings.
- To study different boilers accessories.
- To study two-stroke and four stroke petrol engine.
- To study two-stroke and four storke diesel engine.
- To study air reciprocation compressor unit.
- To determine the CV of fuel using bomb calorimeter.

Examination Schedule:

]	н'	E		
A	PR	PR	V		
5	10	10	5	35	35

MECHANICS OF SOLIDS LAB

Course Code: BTM 323 P:02 C:01

Course Contents:

Experimental work will be based on the paper of Mechanics of Solids.

List of Experiments:

MECHANICS OF SOLIDS LAB

- 1. Tensile Test (MS)
- 2. Double Shear Test (MS)
- 3. Compression Test (CI)
- 4. BrinellHardness No.
- 5. Izod Impact
- 6. Testing Machine
- 7. Rockwell Hardness Tester
- 8. Spring Stiffness (Spring Compression Testing machine)

9. Torsion testing machine

Examination Scheme:

]	E	E		
A	PR	PR	V		
5	10	10	5	35	35

FLUID MECHANICS LAB

Course Code: BTM 324 P:02 C:01

Course Contents:

FLUID MECHANICS LAB

- 1. Verification of Bernoulli's Theorem
- 2. Experiment using Venturimeter
- 3. Determination of coefficient of Discharge C_d, C_c, C! Using
- 4. Circular/triangular/rectangular orifice
- 5. To find major head losses in a pipe line
- 6. To find minor head losses in a pipe line (sudden expansion/contraction/bend)

Examination Scheme:

]	E	E		
A	PR	PR	V		
5	10	10	5	35	35

ELECTRONICS LAB

Course Code: BTM 325 P:02 C:01

Course Contents:

List of Experiments:

- 1. To study the VI characteristic of a diode.
- 2. To study Zener breakdown.
- 3. To study the characteristics of a CE Transistor.
- 4. To study the VI characteristic of CB &CC Transistor
- 5. To study transistor as an a amplifiers
- 6. To study the Truth Table of Universal gates
- 7. To study OP Amp. As inverting and non-inverting Amp.
- 8. To study OP Amp in open loop and close loop.

Examination Scheme:

	IA				E
A	PR	PR	V		
5	10	10	5	35	35

MATERIAL SCIENCE AND METALLURGY

Course Code: BTM 306 L:02 C:02

Course Objective:

Metallurgy and Materials deal with the structure and properties of all materials, which have engineering applications. Metallurgists and Materials Engineers are responsible for designing, producing, examining and testing materials as diverse as metallic engineering alloys, semiconductors and superconductors, ceramics, plastics and composites. This course will help students understand the properties of different types of materials and their applications.

Course Contents:

Module I

Crystal Atoms of Solid: Structure of atom binding in solids metallic, Vander walls, ionic and covalent, Space lattice and crystal system arrangement of atoms in BCC, FCC and HCP crystal. Manufacture of Refractory and Ferrous Metals: Properties uses and selection of acid, basic and natural refractory, metallurgical coke, Properties, types, uses and brief description of the manufacturing processes for iron and steel making.

Module II

Plastic deformation of Metals: Point and line defects in crystals, their relation to mechanical properties, deformation of metal by slip and twinning stress strain curves of poly crystalline materials viz. mild steel cast iron and brass yield point phenomenon. Cold and hot working of metals and their effect on mechanical properties, annealing of cold worked metals, principles of re-crystallization and grain growth phenomenon, fracture in metal and alloys, ductile and brittle fracture, fatigue failure

Module III

Alloy Formation and Binary Diagram: Phase in metal system solution and inter-metallic compounds. Hume-Rottery's rules, solidification of pure metals and alloy equilibrium diagrams of isomorphous, eutectic peritectic and eutectoid system, non-equilibrium cooling and coring iron, iron carbon equilibrium diagram.

Module IV

Principles and applications of heat treatment processes viz. annealing, normalizing hardening, tempering; harden ability & its measurement, surface hardening processes. Defects in heat treatment and their remedies; effects produced by alloying elements on the structures and properties of steel. Distribution of alloying elements (Si, Mn. Ni. Cr. Mo. TL. Al) in steel-

EXAMINATION SCHEME:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

Text & References:

Text:

- V. Raghavan, "Material Science & Engineering", Prentice Hall India Ltd., 2001.
- Shackelford, J.F. and Muralidhara, M.K., Introduction to Material Science for Engineers (6/e), Pearson Education, 2007
- S.K. Hazra Chaudhuri, "Material Science & Processes", Indian Book Publishers, Calcutta, 1983.
- R.B. Gupta, "Material Science Processes", Satya Prakashan, New Delhi, 2000.

References:

- Degarmo E. Paul et.al, "Materials & Processes in Manufacture", Prentice Hall India, New Delhi, 2001.
- Raymond A Higgim., "Engineering Metallurgy Part 1", Prentice Hall India, New Delhi, 1998. L. Krishna Reddi, "Principles of Engineering Metallurgy", New Age Publication, New Delhi, 2001.
- Buduisky et al, "Engineering Materials & Properties", Prentice Hall India, New Delhi, 2004.
- Peter Haasten, "Physical Metallurgy", Cambridge Univ. Press, 1996.

MARKETING MANAGEMENT

Course Code: MBA104 L:2, T:0, P/FW:2 C:03

Course Objective:

The objective of this course is to To familiarize the students with the basic concepts and principles of marketing and to develop their conceptual and analytical skills to be able to manage marketing operations of a business firm.

Course Contents:

Module I: Introduction

Nature and Scope of Marketing; Core Marketing Concepts; Evolution of modern marketing concept; Modern marketing concepts; Marketing Mix; emerging trends in marketing, Environmental Scanning.

Module II: Product and Pricing Decisions

Product - concept and classification; Major product decisions; New product development; Product life cycle – concept and appropriate strategies adopted at different stages, Pricing policies and strategies.

Module III: Distribution Decisions

Channels of distribution – concept and importance; Role of Channel intermediaries and their functions; Channel management; Distribution logistics – concept, importance and major logistics decisions; Channel integration and systems

Module IV: Differentiation Segmentation Targeting and Positioning

Differentiation, Market Segmentation, Targeting and Positioning: Bases for segmenting a consumer market; Levels of market segmentation; Factors influencing selection of market segments; Criteria for effective market segmentation; Target market selection and strategies; Positioning – concept, bases and process

Module V: Consumer Behavior

Consumer vs. business buying behavior; Consumer buying decision process and influences

Module VI: Integrated Marketing Communication

Integrated Marketing Communication – Concept; Communication process and promotion; determining promotion mix; Factors influencing promotion mix; Ethical issues in promotion decisions.

Evaluation:

Components	CPA	T	Q/S/CA	A	ME	EE
Weightage (%)	5	-	5	5	15	70

- · Kotler, P., Keller, K. L., Koshy, A. & Jha, M. (2013), Marketing Management— A South Asian Perspective, 14th Ed, Pearson India
- Lamb, C. W., Hair, J. F., & McDaniel, C. (2015). Mktg, 8th Ed, Cengage Learning.
- Etzel, M. J., Walker, B. J., Staton, W. J., & Pandit, A. (2008). Marketing Concepts and Cases, 13th Ed, Tata McGraw Hill (Special Indian Edition).
- · Czinkota, M. (2012). Marketing Management, 10th Ed, Cengage Learning.
- Kazmi, S. H. H. (2007). Marketing Management Text and Cases, 1st Ed, Excel Books.
- · Kumar, A., & Meenakshi, N. (2010). Marketing Management, 2nd Ed, Vikas Publishing House.
- · Zikmund, W. G., & D'Amico, M. (1998). Marketing: Creating and Keeping Customers in an Ecommerce World, 6th Ed, South-Western College Publication

COMMUNICATION SKILLS - I

Course Code: BCS 301 P:02 C:01

Course Objective:

To form written communication strategies necessary in the workplace

Course Contents:

Module I: Introduction to Writing Skills

Effective Writing Skills Avoiding Common Errors Paragraph Writing Note Taking Writing Assignments

Module II: Letter Writing

Types Formats

Module III

Memo

Agenda and Minutes

Notice and Circulars

Module IV: Report Writing

Purpose and Scope of a Report Fundamental Principles of Report Writing Project Report Writing Summer Internship Reports

Examination Scheme:

Components	CT1	CT2	CAF	V	GD	GP	A
Weightage (%)	20	20	25	10	10	10	5

CAF - Communication Assessment File

GD - Group Discussion

GP - Group Presentation

- Business Communication, Raman Prakash, Oxford
- Creative English for Communication, Krishnaswamy N, Macmillan
- Textbook of Business Communication, Ramaswami S, Macmillan
- Working in English, Jones, Cambridge
- A Writer's Workbook Fourth edition, Smoke, Cambridge
- Effective Writing, Withrow, Cambridge
- Writing Skills, Coe/Rycroft/Ernest, Cambridge
- Welcome!, Jones, Cambridge

BEHAVIOURAL SCIENCE - III (INTERPERSONAL COMMUNICATION)

Course Code: BSS 301 P:02 C:01

Course Objective:

This course provides practical guidance on

- Enhancing personal effectiveness and performance through effective interpersonal communication
- Enhancing their conflict management and negotiation skills

Course Contents:

Module I: Interpersonal Communication: An Introduction

Importance of Interpersonal Communication

Types – Self and Other Oriented

Rapport Building - NLP, Communication Mode

Steps to improve Interpersonal Communication

Module II: Behavioural Communication

Meaning and Nature of behavioural communication

Persuasion, Influence, Listening and Questioning

Guidelines for developing Human Communication skills

Relevance of Behavioural Communication for personal and professional development

Module III: Interpersonal Styles

Transactional Analysis

Life Position/Script Analysis

Games Analysis

Interactional and Transactional Styles

Module IV: Conflict Management

Meaning and nature of conflicts

Styles and techniques of conflict management

Conflict management and interpersonal communication

Module V: Negotiation Skills

Meaning and Negotiation approaches (Traditional and Contemporary)

Process and strategies of negotiations

Negotiation and interpersonal communication

Module VI: End-of-Semester Appraisal

Viva based on personal journal

Assessment of Behavioural change as a result of training

Exit Level Rating by Self and Observer

Examination Scheme:

Components	SAP	A	Mid Term Test (CT)	VIVA	Journal for Success (JOS)
Weightage (%)	20	05	20	30	25

- Vangelist L. Anita, Mark N. Knapp, Inter Personal Communication and Human Relationships: Third Edition, Allyn and Bacon
- Julia T. Wood. Interpersonal Communication everyday encounter
- Simons, Christine, Naylor, Belinda: Effective Communication for Managers, 1997 1st Edition Cassel
- Goddard, Ken: Informative Writing, 1995 1st Edition, Cassell
- Harvard Business School, Effective Communication: United States of America
- Foster John, Effective Writing Skills: Volume-7, First Edition 2000, Institute of Public Relations (IPR)
- Beebe, Beebe and Redmond; Interpersonal Communication, 1996; Allyn and Bacon Publishers.

FRENCH - III

Course Code: FLF 301 L:02 C:02

Course Objective:

To provide the students with the know-how

- To master the current social communication skills in oral and in written.
- To enrich the formulations, the linguistic tools and vary the sentence construction without repetition.

Course Contents:

Module B: pp. 76 – 88 Unité 6

Module C: pp. 89 to 103 Unité 7

Contenu lexical:

Unité 6: se faire plaisir

- 1. acheter : exprimer ses choix, décrire un objet (forme, dimension, poids et matières) payer
- 2. parler de la nourriture, deux façons d'exprimer la quantité, commander un repas au restaurant
- 3. parler des différentes occasions de faire la fête

Unité 7: Cultiver ses relations

- 1. maîtriser les actes de la communication sociale courante (Salutations, présentations, invitations, remerciements)
- annoncer un événement, exprimer un souhait, remercier, s'excuser par écrit.
- 3. caractériser une personne (aspect physique et caractère)

Contenu grammatical:

- 1. accord des adjectifs qualificatifs
- 2. articles partitifs
- 3. Négations avec de, ne...rien/personne/plus
- 4. Questions avec combien, quel...
- 5. expressions de la quantité
- 6. ne...plus/toujours encore
- 7. pronoms compléments directs et indirects
- 8. accord du participe passé (auxiliaire « avoir ») avec l'objet direct
- 9. Impératif avec un pronom complément direct ou indirect
- 10. construction avec « que » Je crois que/ Je pense que/ Je sais que

Examination Scheme:

Components	CT1	CT2	С	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• le livre à suivre: Campus: Tome 1

GERMAN - III

Course Code: FLG 301 L:02 C:02

Course Objective:

To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.

To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany

Course Contents:

Module I: Modal verbs

Modal verbs with conjugations and usage Imparting the finer nuances of the language

Module II: Information about Germany (ongoing)

Information about Germany in the form of presentations or "Referat"—neighbors, states and capitals, important cities and towns and characteristic features of the same, and also a few other topics related to Germany.

Module III: Dative case

Dative case, comparison with accusative case

Dative case with the relevant articles

Introduction to 3 different kinds of sentences – nominative, accusative and dative

Module IV: Dative personal pronouns

Nominative, accusative and dative pronouns in comparison

Module V: Dative prepositions

Dative preposition with their usage both theoretical and figurative use

Module VI: Dialogues

In the Restaurant,

At the Tourist Information Office.

A telephone conversation

Module VII: Directions

Names of the directions

Asking and telling the directions with the help of a roadmap

Module VIII: Conjunctions

To assimilate the knowledge of the conjunctions learnt indirectly so far

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs

SPANISH - III

Course Code: FLS 301 L:02 C:02

Course Objective:

To enable students acquire knowledge of the Set/definite expressions (idiomatic expressions) in Spanish language and to handle some Spanish situations with ease.

Course Contents:

Module I

Revision of earlier semester modules

Set expressions (idiomatic expressions) with the verb Tener, Poner, Ir....

Weather

Module II

Introduction to Gustar...and all its forms. Revision of Gustar and usage of it

Module III

Translation of Spanish-English; English-Spanish. Practice sentences.

How to ask for directions (using estar)

Introduction to IR + A + INFINITIVE FORM OF A VERB

Module IV

Simple conversation with help of texts and vocabulary

En el restaurante

En el instituto

En el aeropuerto

Module V

Reflexives

Examination Scheme:

Components	CT1	CT2	С	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Español, En Directo I A
- Español Sin Fronteras -Nivel Elemental

CHINESE – III

Course Code: FLC 301 L:02 C:02

Course Objective:

Foreign words are usually imported by translating the concept into Chinese, the emphasis is on the meaning rather than the sound. But the system runs into a problem because the underlying name of personal name is often obscure so they are almost always transcribed according to their pronciation alone. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I

Drills

Dialogue practice

Observe picture and answer the question.

Introduction of written characters.

Practice reading aloud

Practice using the language both by speaking and by taking notes.

Character writing and stroke order

Module II

Measure words

Position words e.g. inside, outside, middle, in front, behind, top, bottom, side, left, right, straight.

Directional words – beibian, xibian, nanbian, dongbian, zhongjian.

Our school and its different building locations.

What game do you like?

Difference between "hii" and "neng", "keyi".

Module III

Changing affirmative sentences to negative ones and vice versa

Human body parts.

Not feeling well words e.g.; fever, cold, stomach ache, head ache.

Use of the modal particle "le"

Making a telephone call

Use of "jiu" and "cal" (Grammar portion)

Automobiles e.g. Bus, train, boat, car, bike etc.

Traveling, by train, by airplane, by bus, on the bike, by boat.. etc.

Module IV

The ordinal number "di"

"Mei" the demonstrative pronoun e.g. mei tian, mei nian etc.

use of to enter to exit

Structural particle "de" (Compliment of degree).

Going to the Park.

Description about class schedule during a week in school.

Grammar use of "li" and "cong".

Comprehension reading followed by questions.

Module V

Persuasion-Please don't smoke.

Please speak slowly

Praise – This pictorial is very beautiful

Opposites e.g. Clean-Dirty, Little-More, Old-New, Young-Old, Easy-Difficult, Boy-Girl, Black-White, Big-Small, Slow-Fast ... etc.

Talking about studies and classmates

Use of "it doesn't matter"

Enquiring about a student, description about study method.

Grammar: Negation of a sentence with a verbal predicate.

Examination Scheme:

Components	CT1	CT2	С	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation I – Interaction/Conversation Practice

Text & References:

• "Elementary Chinese Reader Part I, Part-2" Lesson 21-30

KINEMATICS OF MACHINES

Course Code: BTM 401 L:03 C:03

Course Objective:

The objective of this course is to identify the alternatives to satisfy the needs of the customer and to quantify and evaluate the alternatives. It includes an introduction to the study of motion of constrained mechanism in machine systems. The objective is to develop the students understanding of basic machine design. The overall objective of this course is to learn how to analyze the motions of mechanisms, design mechanisms to have given motions.

Course Contents:

Module I: Mechanisms and Machines:

Mechanism, machine, plane and space mechanisms, kinematic pairs, kinematic chains and their classification, degrees of freedom, Grubler's criterion, kinematic inversions of four bar mechanism and slider crank mechanism, equivalent linkages, pantograph, straight line motion mechanisms, Davis and Ackermann's steering mechanisms, Hooke's joint.

Module II: Kinematic analysis of plane mechanisms using graphical and Cartesian vector notations:

Planar kinematics of a rigid body, rigid body motion, translation, rotation about a fixed axis, absolute general plane motion. General case of plane motion, relative velocity method, velocity and acceleration analysis, instantaneous center and its application, Kennedy's theorem, relative motion, Coriolis component of acceleration.

Module III: Friction

Surface contacts, Types of friction, Friction in screws with square thread and V threads, Pivot and collar friction, Friction clutches-single, multi-plate, cone clutch, Film friction, greasy friction. Friction aspects in Brakes, Different types of brakes, rope belt and chain drive.

Module IV: Gyroscope

Angular velocity and acceleration, gyroscopic torque/couple; gyroscopic effect on naval ships; stability of two and four wheel vehicles. .

Module V: Cams and Followers

Classification of followers and cams, radial cam nomenclature, analysis of follower motion (uniform, modified uniform, simple harmonic, parabolic, cycloidal), pressure angle, radius of curvature, synthesis of cam profile by graphical approach, cams with specified contours.

Evaluation:

Components	ents Other Components Attendance MTE		ESE	
Weight age (%)	10	5	15	70

- Rattan SS; Theory of machines; TMH
- Ambekar AG; Mechanism and Machine Theory; PHI.
- Sharma CS; Purohit K; Theory of Mechanism and Machines; PHI.
- Thomas Bevan; Theory of Machines; Pearson/ CBS PUB Delhi.
- Rao JS and Dukkipati; Mechanism and Machine Theory; NewAge Delhi.
- Dr.Jagdish Lal; Theory of Machines; Metropolitan Book Co; Delhi –
- Ghosh, A, Mallik, AK; Theory of Mechanisms & Machines, 2e; East West Press, Delhi.
- Khurmi RS, Theory of Machines, S Chand.

COMPUTER NETWORKS

Course Code: BTM 402 L:03 C:03

Course Objective:

The objective of this course is to gain an understanding of the fundamentals of data communications networks. The course provides a unified and fundamental view of the broad field of data communications networks. The major areas are covered: 1) Introduction to computer networks 2) Data transmission, 3) Data Communication, 4) Network layer 5) Application layer and Advanced N/w.

Course Contents:

Module I: Introduction

Introduction to Computer Networks. Computer Networks: evolution, uses, hardware and software. OSI & TCP/IP reference models, with functionality and design issues of all layers presented in the models. Different topologies.

Module II: Data Transmission

Analog and Digital transmission, transmission media, line configuration, data communications codes, error detection and correlation methods. Multiplexing techniques (TDM, FDM). Data encoding methods: analog to digital, digital to analog etc.

Module III: Data Communication Methods

Data communication interface, line control unit, UART, USRT, Serial interface, terminal types. SDLC, HDLC, Addressing Switched networks, circuit switching, packet switching, broadcast networks. IEEE 802 LAN Standards, framing, error control, flow control.

Module IV: Network layer and Transport Layer

Design issues of Network Layer and Transport Layer, Routing algorithms, Virtual circuit and datagram. TCP, UDP, Ip4, ICMP, introduction of Ip6. Subnet, Virtual Private Networks, Repeaters, Hub, Routers, diff. types of Bridges, Switches, Gateways etc

Module V: Application Layers and Advanced N/w

Application layers: DNS, E-Mail, HTTP, WWW. Advanced N/w: ATM, Frame relay, ISDN, Bluetooth.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

Text & References:

Text:

- William Stallings, "Data & Computer Communications", 6th Edition, PHI, 2000.
- Forouzan, "Data Communication & Networking", 2nd Edition, McGraw Hill, 2003.

References:

- W. Tomasi, "Advanced Electronic Communication Systems", 2000
- James Martin, "Telecommunications & The Computer", 3rd Edition, PHI. 2001
- P. C. Gupta, "Data Communications, PHI, 2001.

HEAT AND MASS TRANSFER

Course Code: BTM 403 L:02,T:01, C:03

Course Objective:

The main objective of the course to understand the behaviour of thermal systems. To illustrate the development of the governing differential, algebraic and finite difference equations associated with thermal systems. To introduce the possible methods of solution to the governing equation. To investigate the influences of boundary and initial conditions and system parameters on the resulting steady or transient response of the system. To provide the basic tools those are used in thermal system design. To expose students to heat transfer applications in industry.

Course Contents:

Module I Conduction

One-dimensional steady-state conduction through homogeneous and composite plane walls, cylinders and spheres, critical thickness of insulation; heat transfer from fins of uniform cross section.

Module II Free convection

Introduction, Laminar Boundary Layer Equations of Free convection on a vertical flat plate, Integral method for Free convection on a vertical flat plate, Empirical correlations for Natural convection, Free convection under uniform heat flux, free convection caused by centrifugal forces.

Module III Forced convection Introduction, Parllel flow over a flat plate, flow over Cylinders and Spheres, Fully developed Laminar flow in circular Tubes, Flow of Liquid Mettals, Combined free and forced convection

Module IV Radiation

Thermal radiation; Kirchoff's law; Planck's distribution law, Wien's displacement law; Stefan-Boltzmann's relation, Configuration factors; radiant interchange between black and grey surfaces; radiation shielding solar radiation.

Module V Heat exchangers

Combined heat transfer analysis; overall heat transfer co-efficient; types of heat exchangers; LMTD methods of heat exchanger design; simple heat exchanger calculations.

Module VI Mass transfer

Steady state moleculer diffusion in fluids, Mass heat momentum transfer analysis, unsteady state diffusion, diffusion in solids, Ficks law of diffusion, interface mass transfer

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

- Incropera, F.P. and DeWitt, D.P. (2002). Fundamentals of Heat and Mass Transfer, John Willy & Sons, New York, NY.
- Nag, P.K. (2002). Heat and Mass Transfer, TMH.
- John R.Howell & Richrd O Buckius, Fundamentals of Engg. Thermodynamics, McGraw Hill International.
- Holman, J.P. (1997). Heat Transfer, 9th edition, McGraw-Hill.
- Mills, A.F. (1999). Basic Heat and Mass Transfer. Prentice-Hall.
- Thirumaleshwar, M. (2006). Fundamentals of Heat and Mass Transfer, Pearson education.
- Ghoshdastidar, P.S. (2004). Heat Transfer. Oxford University Press.
- Arora, Domkundwar, S. and Domkundwar, A. (1988). A Course in Heat & Mass Transfer, Dhanpat Rai & Co.

MANUFACTURING MACHINES

Course Code: BTM 404 L:03 C:03

Course Objective:

This is a new developmental graduate course for students interested in learning various types of manufacturing machines and various operations that can be possible on machine to make a desired shape to the components. It anticipated that this course would become part of the new manufacturing emphasis area in mechanical engineering.

Course Contents:

Module I: Introduction to Machine Tools

Classification of machine tools, kinds of motion in machine tool operations, definition of cutting speed, feed and depth of cut

Module II: Lathe

Classification and various parts of Lathe, specification, Description of important mechanism viz. apron, tail stock, head stock, work holding, devices and operations, e.g. taper, turning, eccentric turning and screw-cutting, Geometry of a single point cutting tool. Capstan and turret lathe, cutting speed, feed, depth of cut and calculation machining time in lathe machine

Module III: Drilling Machine

Geometry and nomenclature of a twist drill, specification and classification of drilling machines, tool holding devices, work holding devices, different types of operations performed on a drilling machine, cutting speed, feed, depth of cut and calculation machining time in drilling

Module IV: Milling Machine

Working principle, milling methods, classification of milling machines, different types of operations e.g. slab, face, Angular, form, straddle, gang, end, T-slot, saw milling operations, Dividing Head e.g. Plain, universal and optical, Indexing methods e.g. simple, compound and differential indexing

Module V: Shaper, Slotter & Planer

Principal part of a shaper, classification, Quick Return mechanism, table feed mechanism of a shaper, Operations, e.g. horizontal, vertical and inclined shaping, Principal part of a Planer, Types of planer, Planer Operations, Principal part of a Slotter, Types of slotter, Difference between a shaper, planer and slotter.

Module VI: Grinding Machines

Abrasive machining, surface finishing parameters, grinding wheels selection parameters, wheel turning and dressing, Types of grinding machines e.g. Rough grinders, Cylindrical grinders, Internal grinders, surface grinder, Tool and cutter grinder, special purpose grinding machines.

Module VII: Special Machines

Introduction of NC, DNC and CNC machines, Broaching machines, Gear hobbing machine, Lapping, honing and super finishing processes.

EXAMINATION SCHEME:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

MTE:Mid-term Examination, ESE: End Semester Examination; A: Attendance

Text & References:

Text:

- P.N. Rao, "Manufacturing Technology: Metal Cutting & Machine Tools", Tata McGraw Hill, Delhi, 2004.
- B.S. Raghuwanshi, "Workshop Technology", Vol.2, Dhanpat Rai & Sons, 2003.
- Hazra Chandhari S.K., "Elements of Workshop Technology", Vol.2, Media Promoters, 2003.

References:

- P.C. Sharma, "A Text Book of Production. Engineering", S. Chand, New Delhi, 2004.
- Bawa H.S., "Workshop Technology", Vol.2, Tata McGraw Hill, 2004.
- Juneja & Shekhon, "Fundamental of Metal Cutting", New Age Publications
- S.F. Krar Stevan F. and Check A.F., "Technology of M/C Tools", McGraw Hill Book Co., 1986.

- Kibbe Richard et al, "M/c Tool practices", Prentice Hall India, 2003.
- Bangalore HMT, "Production Technology", Tata McGraw Hill, 1980.
 R.K. Jain, "Production Technology", Khanna Publishers
 Gerling Heinrich, "All about Machine Tools", New Age Publication, 2003.

PRINCIPLES OF COMPUTER GRAPHICS

Course Code: BTM 405 L:02 C:02

Course Objective:

The objective of the course is to provide the understanding of the fundamental graphical operations and the implementation on computer, the mathematics behind computer graphics, including the use of spline curves and surfaces. It gives the glimpse of recent advances in computer graphics, user interface issues that make the computer easy, for the novice to use.

Course Contents:

Module I: Introduction to Graphics and Graphics Hardware System

Video display devices, CRT, LCD Display devices Raster scan displays, Random scan displays, Raster scan systems, Random scan Systems.

Input devices, keyboard, mouse, Trackball and spaceball, Joystick, Data glove, Digitizers, Image scanners, Touch panels, Light pens, Voice systems.

Hardcopy devices, Printers, Plotters.

Module II: Output Primitives and Clipping operations

Algorithms for drawing 2D Primitives lines (DDA and Bresenham's line algorithm), circles (bresenham's and midpoint circle algorithm), ellipses (midpoint ellipse algorithm), other curves (conic sections, polynomials and spline curves).

Antialiasing and filtering techniques

Line clipping (cohen-sutherland algorithm), clip windows, circles, ellipses, polygon, clipping with Sutherland Hodgeman algorithm.

Module III: Geometric transformation

2D Transformation: Basic transformation, Translation, Rotation, scaling, Matrix Representations and Homogeneous coordinates, window to viewport transformation.

3D Concepts: Parallel projection and Perspective projection, 3D Transformation.

Module IV: 3D object Representation, Colour models and rendering

Polygon meshes in 3D, Spheres, Ellipsoid, Bezier curves and Bezier surfaces, Bspline curves and surfaces, solid modeling, sweep representation, constructive solid geometry methods. Achromatic and color models.

Shading ,rendering techniques and visible surface detection method: Basic illumination, diffuse reflection, specular reflection. Polygon rendering method, Gouraud & Phong shading. Depth-buffer method, A-buffer method, Depth-sorting method(painter's algorithm).

Module V: Introduction to multimedia

File formats for BMP, GIF, TIFF, IPEG, MPEG-II, Animation techniques and languages.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

Text & References:

Text:

- Foley et. al., "Computer Graphics Principles & practice", 2nd ed. AWL., 2000.
- D. Hearn and P. Baker, "Computer Graphics", Prentice Hall, 1986.
- R. Plastock and G. Kalley, "Theory and Problems of Computer Graphics", Schaum's Series, McGraw Hill, 1986

References:

- R.H. Bartels, J.C. Beatty and B.A. Barsky, "An Introduction to Splines for use in Computer Graphics and Geometric Modeling", Morgan Kaufmann Publishers Inc., 1987.
- C.E. Leiserson, T.H. Cormen and R.L. Rivest, "Introduction to Algorithms", McGraw-Hill Book Company, 1990.
- W. Newman and R. Sproul, "Principles of Interactive Computer Graphics, McGraw-Hill, 1973.
- F.P. Preparata and M.I. Shamos, "Computational Geometry: An Introduction", Springer-Verlag New York Inc., 1985.
- D. Rogers and J. Adams, "Mathematical Elements for Computer Graphics", McGraw-Hill International Edition, 1989

KINEMATICS OF MACHINES LAB

Course Code: BTM 421 P:02 C:01

Course Contents: List of Experiments:

- 1. To study inversion of 3 R-IP Kinematics chain
- 2. To study inversions of 2R-2P Kinematics Chain
- 3. To carry out computer implementable kinematics analysis of 4 R mechanisms
- 4. To carry out computer implementable kinematics analysis of slider bar mechanism
- 5. To study gearbox, clutch and differential gear
- 6. To find the coefficient of friction for clutch plate
- 7. To determine gear ratio for an epicyclical gear train and verify it by analytical method
- 8. To study different types of Cam follower systems
- 9. To verify Gyroscopic Law
- 10. To determine and verify the whirling speed of a shaft-disc system
- 11. To determine the damping factor for a given horizontal vibration set up
- 12. To obtain dynamic balance for an unbalanced system with revolving masses

Examination Scheme:

IA					E
A	PR	LR	V	PR	V
5	10	10	5	35	35

MANUFACTURING MACHINES LAB

Course Code: BTM 422 P:02 C:01

Course Contents:

- 1. Operations on the Lathe Machine.
- 2. Operations on the Shaper Machine.
- 3. Operations on the Planner Machine.
- 4. Operations on the Drilling Machine.
- 5. Operations on the Grinding Machine.
- 6. Operations on the Milling Machine.
- 7. To make a Single point cutting tool

Examination Scheme:

IA				H.	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

PRINCIPLES OF COMPUTER GRAPHICS LAB

Course Code: BTM 423 P:02 C:01

Software Required: Turbo C/C++

Course Contents:

Assignments will be provided for the following:

1. Geometrical shapes based on graphics algorithms

2. 2D Geometric transformation translation, rotation, scaling, reflection.

3. Clipping

4. Animation

Examination Scheme:

IA				H,	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

METROLOGY

Course Code: BTM 406 L:02 C:02

Course Objective:

The main objective of this course is to give the student: a basic understanding of the physical loss governing metrology and tolerance design. Gain and appreciation for the capabilities and applications of metrology through hands own experiences.

Course Contents:

Module I: Principles of measurement

Definition of Metrology, difference between precision and accuracy. Sources of errors: Controllable and Random Errors, Effects of Environment and Temperature, Effects of support, alignment errors.

Length Standards: Line standards, end standards and wavelength standards, transfer from line standards to end standards. Numerical based on line standards. Slip gauges – its use and care, methods of building different heights using different sets of slip gauges.

Limits, fits and tolerances: Various definitions, different types of fits and methods to provide these fits. Numerical to calculate the limits, fits and tolerances, ISO system of limits and fits; Gauges and its types, limit gauges – plug and ring gauges. Gauge Design – Taylor's Principle, wear allowance on gauges.

Module II: Comparators

Principles and working of Mechanical, Electrical, Optical and Pneumatic Comparators.

Angular Measurement: Sine Bar – different types of sine bars, use of sine bars in conjunction with slip gauges, Use of angle gauges, spirit level, errors in use of sine bars. Numericals.Principle and working of autocollimator.

Module III: Straightness and flatness

Definition of Straightness and Flatness error. Numericals based on determination of straightness error of straight edge with the help of spirit level and auto collimator

Screw Thread Measurement: Errors in threads, Measurement of elements of screw threads – major diameter, minor diameter, pitch, flank angle and effective diameter (Two and three wire methods). Effect of errors in pitch and flank angles

Gear Measurement: Measurement of tooth thickness – Gear tooth vernier caliper, Constant chord method, base tangent method and derivation of mathematical formulae for each method.Parkinson Gear Tester.

Module IV

Coordinate measuring machine (CMM)- Constructional features – types, applications – digital devices- computer aided inspection.

Surface texture: Introduction, types of irregularities, Elements of surface Texture, Measurement of surface finish, Examination of surface Roughness.

EXAMINATION SCHEME:

Components	Other	Attendance	MTE	ESE
	Components			
Weightage (%)	10	5	15	70

MTE:Mid-term Examination, ESE: End Semester Examination; A: Attendance

Text and Reference Books:

1. Engineering Metrology and Measurement, N V Raghavendra and Krishnamurthy, Oxford University Press,

- 2. Engineering Metrology and Measurements, Bentley, Pearson Education
- 3. Theory and Design for Mechanical Measurements, 3 rd Edition, Richard S Figliola, Donald E Beasley, Wiley India
- 4. Metrology and Measurement, AnandBewoor&VinayKulkarni McGraw-Hill
- 5. Doebelin's Measurement Systems Ernest Doebelin, DhaneshManik McGraw-Hill
- 6. A Text book of Engineering Metrology, I C Gupta, DhanpatRai Publications 8. A course in Mechanical Measurements and Instrumentation, A K Sawhney, DhanpatRai Publications
- 7. Mechanical Measurements and Instrumentations, Er. R K Rajput, Kataria Publication(KATSON)
- 8. Mechanical Measurement and Metrology by R K Jain, KhannaPublisherMechanical Measurement & Control by D.S. Kumar.
- 9. Industrial Instrumentation & Control by S K Singh, McGrawHill
- 10. Mechanical Measurements by Beckwith & Buck, Narosa publishing House

METROLOGY LAB

Course Code: BTM 424 P:02 C:01

Name of Experiments:

- 1 Set up a dimension by slip gauges (example 36.936; 14.727.....) Measure this set up by micrometer (least count 0.01) several times and read dimensions. Find statistical mean and record the expected variation between the actual dimension and dimension measured by micrometer.
- 2 To check the roundness of a circular bar with the help of dial gauge.
- 3 To calibrate the micrometer using slip gauges.
- 4 Check the bore in a component by a bore-indicator. Set the bore indicator by micrometer and measure the deviation in the bore. Measure several times and obtain the mean value at three positions along the length of the bore.
- 5 Set up a sine bar for measuring the angle of an inclined surface (of a bracket, milling cutter arbor with 7/24 taper,). Measure the angle several times and record the mean value. Use height gauge wherever necessary.
- 6 Performance on angular measurement using angular measuring instruments.
- Measure the straightness of a surface (surface plate; guide way of machine tool) by using straight edge and dial gauge and dial gauge stand.
- 10 To machine a given surface and study its roughness characteristics
- 11 Measure the dimensions of a mechanical component using profile projector
- 12 Measure the dimensions of a mechanical component using tool maker's microscope.
- 13. Measurement of Temperature with different devices.

Open ended Problem:

Students will work on an industrial based problem on measurement.

Examination Scheme:

IA				E	E
A	PR	LR	V	PR	${f V}$
5	10	10	5	35	35

QUALITY CONTROL AND QUALITY ASSURANCE

Course Code: BTM 407 L:03 C:03

Course Objective:

In engineering and manufacturing, **quality control** and **quality assurance** is a set of measures taken to ensure that defective product or services are not produced, and that the design meets performance requirements. Course includes the regulation of the quality of raw materials, assemblies, products and components; services related to production; and management, production, and inspection processes.

Course Contents:

Module I: Introduction

Meaning of Quality and quality improvement, need of Quality, Statistical methods for quality control, Process capability.

Module II: Quality Control

Statistical Quality Control, control charts, Control charts for attributes & variables, Moving average chart.

Module III: Production Control

Acceptance Sampling, OC curve, Sampling Plan, Producer' risk, Consumer's risk, Average Quality Level, AOQL, Design of Single & double sampling plan.

Module IV: Quality Assurance

Need of Quality Assurance, Quality Audit, Concept of Zero defect, ISO 9000 quality systems, total quality management.

EXAMINATION SCHEME:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

MTE:Mid-term Examination, ESE: End Semester Examination; A: Attendance

Text & References:

Text:

- EL Grant & RS Leavenworth, "Statistical Quality Control", McGraw Hill & Co.
- M. Mahajan, "Statistical Quality Control", Dhanpat Rai & Co.
- O.P. Khanna, "Statistical Quality Control", Dhanpat Rai & Co.
- R.C. Gupta, "Statistical Quality Control", Khanna Pulishers

References:

- Amitav Mitra, "Fundamentals of Quality Control", Pearson Education
- Feigenbaum, "Total Quality Control", McGraw Hill & Co.
- Suresh Dalela, "Quality Systems", Standard Publishers & Distributors
- Montgomery DC, "Introduction to Statistical Quality Control", John Wiley & Sons Inc.
- Stephan B. Vardeman, J Marcus Jobe, "Statistical QA Methods for Engineers", John Wiley & Sons Inc.
- Taylor J.R., "Quality Control systems", McGraw Hill Int. Education
- K.C. Arora, "Total Quality Management", S.K. Kataria & Sons.

COMMUNICATION SKILLS - II

Course Code: BCS 401 L:01 C:01

Course Objective:

To teach the participants strategies for improving academic reading and writing. Emphasis is placed on increasing fluency, deepening vocabulary, and refining academic language proficiency.

Course Contents:

Module I: Social Communication Skills

Small Talk Conversational English Appropriateness Building rapport

Module II: Context Based Speaking

In general situations
In specific professional situations
Discussion and associated vocabulary
Simulations/Role Play

Module III: Professional Skills

Presentations Negotiations Meetings Telephony Skills

Examination Scheme:

Components	CT1	CT2	CAF	V	GD	GP	A
Weightage (%)	20	20	25	10	10	10	5

CAF - Communication Assessment File

GD – Group Discussion

GP – Group Presentation

- Essential Telephoning in English, Garside/Garside, Cambridge
- Working in English, Jones, Cambridge
- Business Communication, Raman Prakash, Oxford
- Speaking Personally, Porter-Ladousse, Cambridge
- Speaking Effectively, Jermy Comfort, et.al, Cambridge
- Business Communication, Raman Prakash, Oxford

BEHAVIOURAL SCIENCE - IV (RELATIONSHIP MANAGEMENT)

Course Code: BSS 401 L :01 C:01

Course Objective:

To understand the basis of interpersonal relationship To understand various communication style To learn the strategies for effective interpersonal relationship

Course Contents:

Module I: Understanding Relationships

Importance of relationships Role and relationships Maintaining healthy relationships

Module II: Bridging Individual Differences

Understanding individual differences Bridging differences in Interpersonal Relationship – TA Communication Styles

Module III: Interpersonal Relationship Development

Importance of Interpersonal Relationships Interpersonal Relationships Skills Types of Interpersonal Relationships

Module IV: Theories of Interpersonal Relationships

Theories: Social Exchange, Uncertainty Reduction Theory Factors Affecting Interpersonal Relationships Improving Interpersonal Relationships

Module V: Impression Management

Meaning & Components of Impression Management Impression Management Techniques (Influencing Skills) Impression Management Training-Self help and Formal approaches

Module VI: End-of-Semester Appraisal

Viva based on personal journal Assessment of Behavioural change as a result of training Exit Level Rating by Self and Observer

Examination Scheme:

Components	SAP	A	Mid Term	VIVA	Journal for
			Test (CT)		Success (JOS)
Weightage (%)	20	05	20	30	25

- Vangelist L. Anita, Mark N. Knapp, Inter Personal Communication and Human Relationships: Third Edition, Allyn and Bacon
- Julia T. Wood. Interpersonal Communication everyday encounter
- Simons, Christine, Naylor, Belinda: Effective Communication for Managers, 1997 1st Edition Cassell
- Goddard, Ken: Informative Writing, 1995 1st Edition, Cassell
- Harvard Business School, Effective Communication: United States of America
- Foster John, Effective Writing Skills: Volume-7, First Edition 2000, Institute of Public Relations (IPR)
- Beebe, Beebe and Redmond; Interpersonal Communication, 1996; Allyn and Bacon Publishers.

FRENCH - IV

Course Code: FLF 401 L:02 C:02

Course Objective:

To enable students:

• To develop strategies of comprehension of texts of different origin

• To present facts, projects, plans with precision

Course Contents:

Module C: pp. 104 – 139: Unités 8, 9

Contenu lexical: Unité 8: Découvrir le passé

- 1. parler du passé, des habitudes et des changements.
- 2. parler de la famille, raconter une suite d'événements/préciser leur date et leur durée.
- 3. connaître quelques moments de l'histoire

Unité 9: Entreprendre

- 1. faire un projet de la réalisation: (exprimer un besoin, préciser les étapes d'une réalisation)
- 2. parler d'une entreprise
- 3. parler du futur

Contenu grammatical:

- 1. Imparfait
- 2. Pronom « en »
- 3. Futur
- 4. Discours rapporté au présent
- 5. Passé récent
- 6. Présent progressif

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• le livre à suivre : Campus: Tome 1

GERMAN - IV

Course Code: FLG 401 L:02 C:02

Course Objective:

To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.

To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany.

Introduction to Advanced Grammar Language and Professional Jargon

Course Contents:

Module I: Present perfect tense

Present perfect tense, usage and applicability Usage of this tense to indicate near past Universal applicability of this tense in German

Module II: Letter writing

To acquaint the students with the form of writing informal letters.

Module III: Interchanging prepositions

Usage of prepositions with both accusative and dative cases Usage of verbs fixed with prepositions Emphasizing on the action and position factor

Module IV: Past tense

Introduction to simple past tense Learning the verb forms in past tense Making a list of all verbs in the past tense and the participle forms

Module V: Reading a Fairy Tale

Comprehension and narration

- Rotkäppchen
- Froschprinzessin
- Die Fremdsprache

Module VI: Genitive case

Genitive case – Explain the concept of possession in genitive Mentioning the structure of weak nouns

Module VII: Genitive prepositions

Discuss the genitive propositions and their usage: (während, wegen, statt, trotz)

Module VIII: Picture Description

Firstly recognize the persons or things in the picture and identify the situation depicted in the picture; Secondly answer questions of general meaning in context to the picture and also talk about the personal experiences which come to your mind upon seeing the picture.

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs

SPANISH - IV

Course Code: FLS 401 L:02 C:02

Course Objective:

To enable students acquire working knowledge of the language; to give them vocabulary, grammar, voice modulations/intonations to handle everyday Spanish situations with ease.

Course Contents:

Module I

Revision of eaSrlier semester modules Introduction to Present Continuous Tense (Gerunds)

Module II

Translation with Present Continuous Tense Introduction to Gustar, Parecer, Apetecer, doler

Module III

Imperatives (positive and negative commands of regular verbs)

Module IV

Commercial/business vocabulary

Module V

Simple conversation with help of texts and vocabulary En la recepcion del hotel En el restaurante En la agencia de viajes En la tienda/supermercado

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• Español Sin Fronteras (Nivel – Elemental)

CHINESE – IV

Course Code: FLC 401 L:02 C:02

Course Objective:

How many characters are there? The early Qing dynasty dictionary included nearly 50,000 characters the vast majority of which were rare accumulated characters over the centuries. An educate person in China can probably recognize around 6000 characters. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I

Dialogue Practice
Observe picture and answer the question
Pronunciation and intonation
Character writing and stroke order.
Electronic items

Module II

Traveling - The Scenery is very beautiful

Weather and climate

Grammar question with – "bu shi Ma?"

The construction "yao ... le" (Used to indicate that an action is going to take place)

Time words "yiqian", "yiwai" (Before and after).

The adverb "geng".

Module III

Going to a friend house for a visit meeting his family and talking about their customs.

Fallen sick and going to the Doctor, the doctor examines, takes temperature and writes prescription.

Aspect particle "guo" shows that an action has happened some time in the past.

Progressive aspect of an actin "zhengzai" Also the use if "zhe" with it.

To welcome someone and to see off someone I cant go the airport to see you off... etc.

Module IV

Shipment. Is this the place to checking luggage?

 $Basic\ dialogue\ on-Where\ do\ u\ work?$

Basic dialogue on – This is my address

Basic dialogue on – I understand Chinese

Basic dialogue on – What job do u do?

Basic dialogue on – What time is it now?

Module V

Basic dialogue on – What day (date) is it today?

Basic dialogue on – What is the weather like here.

Basic dialogue on – Do u like Chinese food?

Basic dialogue on – I am planning to go to China.

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• "Elementary Chinese Reader, Part-2" Lesson 31-38

MACHINE DESIGN - I

Course Code: BTM 501 L:03 C:03

Course Objective:

The objective of this course is to help students apply concepts learned in the mechanics, structure, material and manufacturing courses. This course offers working knowledge in the use of proper failure theories under steady and variable loading, design of mechanical elements, such as shaft, coupling, power screws, and detachable, permanent and welded connections.

Course Contents:

Module I: Variable stresses in Machine Parts

Fatigue and Endurance Limit, Factor of Safety for Fatigue Loading, Stress concentration, Notch sensitivity, Gerber Method, Goodman Method and Soderberg Method for a combination of stresses.

Module II: Power Screws

Types of screw threads, Torque required to raise and lower the load, Efficiency of square threaded screw, overhauling and self locking screw, stresses in power screw, design of screw jacks.

Module III: Shaft, Keys and Couplings

Design of shaft, Types of Keys, Splines, Strength of Sunk Key, types of shaft coupling, Sleeve and muff coupling, Flange coupling, Flexible coupling, Oldham coupling, Universal coupling.

Module IV: Cotter and Knuckle Joints

Types of cotter joints, design of socket and spigot joint, design of sleeve and cotter joint, design of jib and cotter joint, Design procedure of Knuckle joint.

Module V: Drives

Types of Belt drives, Flat Belt drives, Velocity ratio, Sleep, Creep of Belt, Length of open Belt, length of cross belt, power transmission by belt, Maximum tension in the belt. Types of V belt and Pulleys, advantages and disadvantages of V belt over Flat Belt, Ratio of Driving tensions for V belt, Rope drives. Chain drives, advantages and disadvantages of Chain drives.

Module VI: Riveted and Welded Joint

Types of Riveted joint, Lap joint, Butt Joint, Caulking and Fullering, Failure of Riveted joint, Strength of Riveted joint, Efficiency of Riveted joint. Advantages and Disadvantages of welded joint over Riveted joint, Strength of Fillet joint, strength of Butt joints.

Examination Scheme:

Components	Other Components	Attendance	MTE	ESE
Weight age (%)	10	5	15	70

- J.E. Shigley, Mechanical Engineering Design.
- Sadhu Singh, Machine Design
- R.S. Khurmi & J.K. Gupta, Machine design
- D.K. Aggarwal & P.C. Sharma, Machine Design

RELATIONAL DATABASE MANAGEMENT SYSTEM

Course Code: BTM 502 L:02 C:02

Course Objective:

Database applications have grown enormously in number and importance in the past two decades. They are used to store, manipulate and retrieve data in nearly every type of organization. The applications are used by individuals on PCs, by workgroups on network servers and by all employees using enterprise-wide distributed systems. Database technology will assume even greater importance in the future due to the highly competitive environment and the explosive use of the internet in Business-to-Client and Business-to-Business applications and the need to store more data. That is why a course database management is a core course in the CS&IT curriculum.

Course Contents:

Module I: Introduction

Concept and goals of DBMS, Database Languages, Database Users, Database Abstraction. Basic Concepts of ER Model, Relationship sets, Keys, Mapping, Design of ER Model

Module II: Hierarchical model & Network Model

Concepts, Data definition, Data manipulation and implementation. Network Data Model, DBTG Set Constructs, and Implementation

Module III: Relational Model

Relational database, Relational Algebra, Relational & Tuple Calculus.

Module IV: Relational Database Design and Query Language

SQL, QUEL, QBE, Normalization using Functional Dependency, Multivalued dependency and Join dependency.

Examination Scheme:

Components	Other Components	Attendance	MTE	ESE
Weight age (%)	10	5	15	70

Text & References:

Text:

- Korth, Silberschatz, "Database System Concepts", 4th Ed., TMH, 2000.
- Steve Bobrowski, "Oracle 8 Architecture", TMH, 2000

References:

- Date C. J., "An Introduction to Database Systems", 7th Ed., Narosa Publishing, 2004
- Elmsari and Navathe, "Fundamentals of Database Systems", 4th Ed., A. Wesley, 2004
- Ullman J. D., "Principles of Database Systems", 2nd Ed., Galgotia Publications, 1999

MEASUREMENTS AND CONTROLS

Course Code: BTM 503 L:02 C:02

Course Objective:

Knowledge of Measurement & Control in any engineering branch is vital in designing and industrial production/application. The course covers the characteristics and classifications of measurement related to mechanical & automation as well as recent development in measurement & control engineering applications. Successful completion of this course will be very helpful for the students who wish to join challenging industry.

Course Contents:

Module I

Introduction to generalized measurement system and their functional elements. Basic characteristics of measuring devices, Standards & Calibration. Accuracy, Precision, Sensitivity, Resolution, Linearity & Errors in measurement.

Module II

Transducers, Stages & their classification, Resistive transducers, Strain gauges, Rosettes, Inductive transducers, Displacement measurement, LVDT.

Measurement of viscosity & flow, Transient Time & Doppler's flow meter, Measurement of liquid level, humidity, hair hygrometers.

Module III

Control engineering applications, Introduction to type of control Systems, Open loop & close loop Control Systems; Examples & their block diagrams. Transfer function.

Module IV: Modes of Control & Controller Mechanism

P, PI and PID Controller. Pneumatic & Hydraulic Controller, General Pr. of generating various Control Actions. Concept of Control Valves.

Examination Scheme:

Components	Other Components	Attendance	MTE	ESE
Weight age (%)	10	5	15	70

Text & References:

Text.

- Sawhney A. K 2000, "A course in Electrical & Electronics Measurement & Instrumentation", Dhanpat Rai & Son's.
- B.C Nakra, K K Chaudhary. 2004,"Instrumentation, Measurement & Analysis". TMH.
- M Ogata, "Modern Control Engineering" PHI.

References:

- H.S Kalsi, 1999, Electronic Instrumentation", TMH.
- B. C Kuo, "Automatic Control System", Prentice Hall.

DYNAMICS OF MACHINES

Course Code: BTM 504 L:02 T:01 C:03

Course Objective:

The objective of this course is to identify the alternatives to satisfy the needs of the customer and to quantify and evaluate the alternatives. The study of kinematics and dynamics of machines is an applied field of mechanical engineeringthat is concerned with understanding the relationship between the geometry and the motions of the parts of a machine and the forces that produce this motion. The overall objective of this course is to learn how to analyze the motions of mechanisms, design mechanisms to have given motions, and analyze forces in machines.

Course Contents:

Module I:Gears

Classification of gears, nomenclature, involutes and cycloidal to other of ileproperties, synthesis of to other of ilefors purgea rs, to oth system, conjugate action, velocity of sliding, arcof contact, path of contact, contact ratio, interference and under cutting, helical, spiral, be veland worm gears.

GearTrains:Simple,compound, epicyclic gear trains; determination of gear speeds using vector, analytical and tabular method; torque calculations in simple, compound and epicyclic gear trains.

Module II: Governors

Introduction, Function and types of governors, Centrifugal governors, Watt governor, Porter governor, Proell governor, Hartnell governor, characteristics of governor- stability, Sensitivity, isochronism, Hunting controlling forces and stability, Effort and power of governor, Inertia governor.

Module III:Flywheel

Function, construction, Flywheel's rim and dimensions, Operation of flywheel in a punching Machine, turning moment diagram, Fluctuation of energy and fluctuation of speed of crank shaft, Coefficient of fluctuation of energy and speed.

Module IV: Balancing

Static and dynamic balancing, balancing of revolving and reciprocating masses, single and multi-cylinder engines, tractive force, swaying couple, hammer blow.

Module V: Natural Vibrations

Elements of vibratory system; lumped and distributed parameter systems. Undamped Free Vibrations: Derivation of differential equation of motion: the energy method, the method based on Newton's second law of motion, and Rayleigh's method. Solution of differential equation of motion, Natural frequency of vibration. Damped Free Vibrations: Viscous damping: coefficient of damping; damping ratio; under damped, over damped and critically damped systems; logarithmic decrement; frequency of damped free vibration

Module VI: Forced Vibrations

Harmonically excited Vibration: One degree of freedom- forced harmonic vibration; vector representation of forces; excitation due to rotating and reciprocating unbalance; vibration Isolation, force and motion transmissibility, Whirling Motion and Critical Speed

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weight age (%)	10	5	15	70

- RattanSS;Theoryofmachines;TMH
- AmbekarAG;MechanismandMachineTheory;PHI.
- SharmaCS;PurohitK;TheoryofMechanismandMachines;PHI.
- ThomasBevan; Theoryof Machines; Pearson/CBSPUBDelhi.
- RaoJSandDukkipati;MechanismandMachineTheory;NewAgeDelhi.
- Dr.JagdishLal;TheoryofMachines;MetropolitanBookCo;Delhi-
- Ghosh, A, Mallik, AK; Theory of Mechanisms & Machines, 2e, ; East West Press, Delhi.
- Khurmi RS, Theory of Machines, S Chand.

MACHINE DESIGN-I LAB

Course Code: BTM 521 P:02 C:01

Course Contents:

Design of:

- (i) Cotter Joint
- (ii) Knuckle Joint
- (iii) Pipe Joint
- (iv) Screw Jack
- (v) Rigid and Flexible coupling
- (vi) Spur Gear Train

Examination Scheme:

IA				I H'	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

RELATIONAL DATABASE MANAGEMENT SYSTEM LAB

Course Code: BTM 522 P:02 C:01

Software Required: Oracle 9i

Course Contents:

Topics covered in Lab will include:

1. Database Design

- 2. Data Definition (SQL)
- 3. Data Retrieval (SQL)
- 4. Data Modification (SQL)
- 5. Views
- 6. Triggers and Procedures

Examination Scheme:

]		E		
A	PR	LR	V	PR	V
5	10	10	5	35	35

MEASUREMENT AND CONTROL LAB

Course Code: BTM 523 P:02 C:01

Course Contents:

List of Experiments:

- 1. Measurement of resolution and sensitivity of thermocouple (study of various thermocouples J, K, T, etc.) (Calibration)
- 2. Measurement of resolution, sensitivity and non linearity of termistor. (termistor instability)
- 3. Measurement of thickness of LVDT.
- 4. Measurement of resolution of LVDT (and displacement measurement)
- 5. Study of proportional control and offset Problems.
- 6. Study of proportional integral control.
- 7. Study of proportional integral derivative (PID) control.
- 8. Vibration measurement by stroboscope (natural frequency of a cantilever)
- 9. Angular frequency (speed of rotating objects) measurement by stroboscope.
- 10. Pressure transducer study and calibration.
- 11. Proving ring (force measurement)
- 12. Torque cell.
- 13. Closed loop study of an electric circuit.
- 14. Young's modulus of a cantilever.
- 15. Young's modulus and poison's ratio of tensile test piece of M.S.

Examination Scheme:

]	l H	E		
A	PR	LR	V	PR	V
5	10	10	5	35	35

PROGRAMMING LAB - II (MAT LAB)

Course Code: BTM 524 C:01 P:02

Course Objective:

It is matrix based simulation software which works on algorithms. It carries various tool boxes which is helpful for day -to-day accessibility to real world. It helps in designing graphic user interface, provides tools for neural network. Hardware which are not economical for general purpose, this software tool box helps to minimize the cost ability.

Course Contents:

Software Requirement: MAT LAB 6.5

Name of Experiments:

1 To draw the time response for first order transfer function

$$H(S) = \frac{6}{S+9}$$

second order transfer function

$$H(S) = \frac{45}{S^2 + 6S + 49}$$

third order transfer function

$$H(S) = \frac{8S}{S(S+2)(S+3)}$$

2 To realize the time response in simulink by importing the system parameters from the work window for given transfer function

$$H(S) = \frac{4S}{S(S+9)(S+5)}$$

3 To draw the bode plot for following function

$$H(S) = \frac{46S}{(S+2)(S+4)(S^2+2S+4)}$$

and draw the bode plot using input arguments that represents the continuous state space system:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 10 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u$$

4 To draw the Nyquist plot for following function

$$H(S) = \frac{46S}{(S+2)(S+4)(S^2+2S+4)}$$

and draw the Nyquist plot using input arguments that represents the continuous state space system:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 10 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u$$

5 To draw the root locus plot for following transfer function

$$H(S) = \frac{45}{S(S+2)(S+4)^2}$$

6 Write a program to determine the values of the DTFT of a real sequence described as a rational function in $e^{-j\omega}$

$$X\left(e^{-j\omega}\right) = \frac{0.008 - 0.033e^{-j\omega} + 0.05e^{-j2\omega} - 0.033e^{-j3\omega} + 0.033e^{-j4\omega}}{1 + 2.37e^{-j\omega} + 2.7e^{-j2\omega} + 1.6e^{-j3\omega} + 0.41e^{-j4\omega}}$$

where K = 256

7 Write a program to determine the M-point DFT u[k] of the following N-points sequence $u[n] = \{1, 0 \le n \le N-1$

{0, Otherwise

here N=8 and M=16

8 Express the following Z- transform in factored form, plot its poles and zeros, and then determine its ROCs

$$G(Z) = \frac{2z^4 + 16z^3 + 44z^2 + 56z + 32}{3z^4 + 3z^3 - 15z^2 + 18z - 12}$$

9 Write a program to test the stability of the transfer function

$$H(Z) = \frac{1}{4z^4 + 3z^3 + 2z^2 + z + 1}$$

10 Design a DAS of given four signals with signal conditioning equipments in SIMULINK

Examination Scheme:

]	E	E		
A	PR	LR	V	PR	V
5	10	10	5	35	35

COMPUTER AIDED DRAFTING AND DESIGN LAB

Course Code: BTM 525 P:02 C:01

Course Contents:

- 1. Basics of Auto CAD
- 2. Modeling of machine Components such as Connecting Rod, Piston etc.
- 3. Introductory exercise for 3-D modeling.
- 4. Exercise for advanced 3-D modeling.
- 5. Exercise for 3-D editing options.
- 6. Exercise for Assembly modeling.
- 7. Exercise for surface modeling.
- 8. Using Any One (From CREO, Unigraphics, CATIA, Solid Edge, Inventor) Parametric Software.
 - a. Prepare solid models of dismantled parts of an assembly.
 - b. Assemble the parts.
 - c. Get orthographic projection of solid models prepared at "a" above.
 - d. Get orthographic projection of an assembly model prepared at "b" above.
 - e. Prepare the bill of material (BOM).
 - f. Prepare a power point presentation of the work.

Examination Scheme:

]	H	E		
A	PR	LR	V	PR	V
5	10	10	5	35	35

PRACTICAL TRAINING - I

Course Code: BTM 550 C:06

Methodology

Practical training is based on the theoretical subjects studied by students. It can be arranged within the college or in any related industrial unit. The students are to learn various industrial, technical and administrative processes followed in the industry. In case of on-campus training the students will be given specific task of fabrication/assembly/testing/analysis. On completion of the practical training the students are to present a report covering various aspects learnt by them and give a presentation on same.

Examination Scheme:

Total	100
Presentation	25
Viva	15
Training Report	40
Feedback from industry/work place	20

THEORY OF METAL FORMING

Course Code: BTM 505 L:02 C:02

Course Objective:

The objective of this course is to introduce the fundamentals of basic manufacturing processes (solidification process, heat treatment, deformation processes, material removal processes, and joining processes). The students are expected to be able to select, analyze and design basic manufacturing processes for product development.

Course Contents:

Module I: Introduction

Review of tensile test, True stress and true strain, Yielding criteria for ductile metals, Yield locus, Plastic stress-strain relations-Levymises equation, prandtl-Reuss equations.

Module II: Plastic deformation

Crystal Geometry, Lattice defects, Deformation by slip, Shear Stress required to cause slip in a perfect Crystal, Deformation by twinning, Fracture, Types of Fracture, Creep Failure.

Module III: Introduction to metal working Processes

Classification of metal working processes-Cold working, Hot working, Effect of variables on metal working processes, Forging Processes, Forging equipment, Open die forging, Closed die forging, Load calculation in Plane strain forging, Forging defects. Rolling Mills, Hot rolling, Cold rolling, Forces and Geometrical Relationships in Rolling, Rolling load & torque, rolling defects. Methods of Extrusion, Hot Extrusion, Cold Extrusion, Analysis of Extrusion processes, Effect of Variables on Extrusion pressure, Extrusion defects.

Module IV: Sheet metal forming

Forming Methods, Forming Operations-Shearing, Blanking, Bending, Stretch Forming, Deep Drawing, Stresses developed in Deep Drawing, Defects in Formed Parts.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

- Mechanical Metallurgy by George E. Dieter: McGraw-Hill Book Company
- Metal working by Surinder Kumar, DhanpatRai& Sons

MANAGEMENT OF MANUFACTURING SYSTEMS

Course Code: BTM 506 L:02 C:02

Course Objective:

The overall objective of this course is to provide high caliber engineering students with an in-depth understanding of strategic, tactical and operational issues relating to manufacturing industries worldwide. On completion of the course the students will be equipped with the state-of-the-art concepts, methods, techniques and tools to allow them to contribute towards the competitiveness of manufacturing organizations.

Course Contents:

Module I: Introduction

Production functions, Plant Organization: Principles of organization, Organization structure-line and staff Organization

Plant Location, Layout: Process layout product layout and combination layout – methods of layout, economics of layout.

Module II: Production Planning & Control

Types of products, demand, demand forecasting, marketing strategies, scheduling and control of scheduling, production control.

Module III: Work and method study

Definition and concepts, method study procedures, symbols, advantages, Flow process charts, Motion study, micro motion, SIMO charts, system concepts, classification, analysis techniques.

Module IV: Industrial maintenance

Types, organization for maintenance department, Breakdown and preventive maintenance.

Module V: Inventory control and replacement analysis

Introduction replacement policy and method adopted, EOQ.

Module VI: Management concepts

Development of management principles, scientific management, human relation aspects. Project Management – CPM and PERT.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

Text & References:

Text:

- S.K. Sharma, "Industrial Engg. & Operation Management", S.K. Kataria & Sons.
- Dr. Ravi Shankar, "Industrial Engg. & Management", Galgotia Publications
- M. Mahajan, "Industrial Engg. & Production Management", Dhanpat Rai & Co.
- J Moore, Manufacturing Management, Prentice Hall
- Buffa, Modern production and operations management, E.S. Wiley eastern.

References:

• Joseph S. Martinich, "Production & Operation Management", John Wiley & Sons.

.

COMMUNICATION SKILLS - III

Course Code: BCS 501 L:01 C:01

Course Objective:

To equip the participant with linguistic skills required in the field of science and technology while guiding them to excel in their academic field.

Course Contents:

Module I

Reading Comprehension Summarising Paraphrasing

Module II

Essay Writing Dialogue Report

Module III

Writing Emails Brochure Leaflets

Module IV: Introduction to Phonetics

Vowels
Consonants
Accent and Rhythm
Accent Neutralization
Spoken English and Listening Practice

Examination Scheme:

Components	CT1	CT2	CAF	V	GD	GP	A
Weightage (%)	20	20	25	10	10	10	5

CAF - Communication Assessment File

GD – Group Discussion

GP – Group Presentation

- Effective English for Engineering Students, B Cauveri, Macmillan India
- Creative English for Communication, Krishnaswamy N, Macmillan
- A Textbook of English Phonetics, Balasubramanian T, Macmillan

BEHAVIOURAL SCIENCE - V (GROUP DYNAMICS AND TEAM BUILDING)

Course Code: BSS 501 L :01 C :01

Course Objective:

To inculcate in the students an elementary level of understanding of group/team functions. To develop team spirit and to know the importance of working in teams.

Course Contents:

Module I: Group formation

Definition and Characteristics Importance of groups Classification of groups Stages of group formation Benefits of group formation

Module II: Group Functions

External Conditions affecting group functioning: Authority, Structure, Org. Resources, Organizational policies etc.

Internal conditions affecting group functioning: Roles, Norms, Conformity, Status, Cohesiveness, Size, Intergroup conflict.

Group Cohesiveness and Group Conflict

Adjustment in Groups

Module III: Teams

Meaning and nature of teams
External and internal factors effecting team
Building Effective Teams
Consensus Building
Collaboration

Module IV: Leadership

Meaning, Nature and Functions Self leadership Leadership styles in organization Leadership in Teams

Module V: Power to empower: Individual and Teams

Meaning and Nature
Types of power
Relevance in organization and Society

Module VI: End-of-Semester Appraisal

Viva based on personal journal
Assessment of Behavioural change as a result of training
Exit Level Rating by Self and Observer

Examination Scheme:

Components	SAP	A	Mid Term	VIVA	Journal for
			Test (CT)		Success (JOS)
Weightage (%)	20	05	20	30	25

- Organizational Behaviour, Davis, K.
- Hoover, Judhith D. Effective Small Group and Team Communication, 2002, Harcourt College Publishers
- Dick, Mc Cann & Margerison, Charles: Team Management, 1992 Edition, viva books
- Bates, A. P. and Julian, J.: Sociology Understanding Social Behaviour
- Dressers, David and Cans, Donald: The Study of Human Interaction
- Lapiere, Richard. T Social Change
- Lindzey, G. and Borgatta, E: Sociometric Measurement in the Handbook of Social Psychology, Addison Welsley, US.
- Rose, G.: Oxford Textbook of Public Health, Vol.4, 1985.

- LaFasto and Larson: When Teams Work Best, 2001, Response Books (Sage), New Delhi
- J William Pfeiffer (ed.) Theories and Models in Applied Behavioural Science, Vol 2, Group (1996); Pfeiffer & Company
- Smither Robert D.; The Psychology of Work and Human Performance, 1994, Harper Collins College Publishers

FRENCH - V

Course Code: FLF 501 L:02 C:02

Course Objective:

To furnish some basic knowledge of French culture and civilization for understanding an authentic document and information relating to political and administrative life.

Course Contents:

Module D: pp. 131 – 156 Unités 10, 11

Contenu lexical: Unité 10: Prendre des décisions

1. Faire des comparaisons

2. décrire un lieu, le temps, les gens, l'ambiance

3. rédiger une carte postale

Unité 11: faire face aux problèmes

1. Exposer un problème.

2. parler de la santé, de la maladie

3. interdire/demander/donner une autorisation

4. connaître la vie politique française

Contenu grammatical:

1. comparatif - comparer des qualités/ quantités/actions

2. supposition : Si + présent, futur

3. adverbe - caractériser une action

4. pronom "Y"

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• le livre à suivre : Campus: Tome 1

GERMAN - V

Course Code: FLG 501 L:02 C:02

Course Objective:

To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.

To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany

Introduction to Advanced Grammar and Business Language and Professional Jargon

Course Contents:

Module I: Genitive case

Genitive case – Explain the concept of possession in genitive Mentioning the structure of weak nouns

Module II: Genitive prepositions

Discuss the genitive propositions and their usage: (während, wegen, statt, trotz)

Module III: Reflexive verbs

Verbs with accusative case Verbs with dative case Difference in usage in the two cases

Module IV: Verbs with fixed prepositions

Verbs with accusative case
Verbs with dative case
Difference in the usage of the two cases

Module V: Texts

A poem 'Maxi' A text Rocko

Module VI: Picture Description

Firstly recognize the persons or things in the picture and identify the situation depicted in the picture; Secondly answer questions of general meaning in context to the picture and also talk about the personal experiences which come to your mind upon seeing the picture.

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre f

 ür Ausländer
- P.L Aneja, Deutsch Interessant 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs

SPANISH - V

Course Code: FLS 501 L:02 C:02

Course Objective:

To enable students acquire working knowledge of the language; to give them vocabulary, grammar, voice modulations/intonations to handle everyday Spanish situations with ease.

Course Contents:

Module I

Revision of earlier semester modules

Module II

Future Tense

Module III

Presentations in English on Spanish speaking countries'

Culture

Sports

Food

People

Politics

Society

Geography

Module IV

Situations:

En el hospital

En la comisaria

En la estacion de autobus/tren

En el banco/cambio

Module V

General revision of Spanish language learnt so far.

Examination Scheme:

Components	CT1	CT2	C	I	\mathbf{V}	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• Español Sin Fronteras, Greenfield

CHINESE - V

Course Code: **FLC 501** L:02 C:02

Course Objective:

What English words come from Chinese? Some of the more common English words with Chinese roots areginseng, silk, dim sum, fengshui, typhoon, yin and yang, T'al chi, kung-fu. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I

Drills

Dialogue practice

Observe picture and answer the question.

Pronunciation and intonation.

Character writing and stroke order

Module II

Intonation

Chinese foods and tastes - tofu, chowmian, noodle, Beijing duck, rice, sweet, sour....etc. Learning to say phrases like – Chinese food, Western food, delicious, hot and spicy, sour, salty, tasteless, tender, nutritious, god for health, fish, shrimps, vegetables, cholesterol is not high, pizza, milk, vitamins, to be able to cook, to be used to, cook well, once a week, once a month, once a year, twice a week.....

Repetition of the grammar and verbs taught in the previous module and making dialogues usingit.

Compliment of degree "de".

Module III

Grammar the complex sentence "suiran ... danshi..." Comparison – It is colder today than it was yesterday.....etc. The Expression "chule....yiwai". (Besides) Names of different animals. Talking about Great Wall of China Short stories

Module IV

Use of "huozhe" and "haishi" Is he/she married? Going for a film with a friend.

Having a meal at the restaurant and ordering a meal.

Module V

Shopping - Talking abut a thing you have bought, how much money you spent on it? How many kinds were there? What did you think of others?

Talking about a day in your life using compliment of degree "de". When you get up? When do you go for class? Do you sleep early or late? How is Chinese? Do you enjoy your life in the hostel?

Making up a dialogue by asking question on the year, month, day and the days of the week and answer them.

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

"Elementary Chinese Reader" Part-II Lesson 39-46

MACHINE DESIGN – II

Course Code: BTM 601 L:3, C:3

Course Objective:

The course aims at developing concepts as to how to analyze mechanical systems and select proper machine elements (bearing, gears, belts, chains). It prepares the students how to design machine element by specifying their type, geometry, material and how to integrate these elements to build a mechanical systems.

Course Contents:

Module I: Gears

Selection of transmission, spur, helical, bevel and worm gears,

Module II: Friction Clutches & Brakes

Materials for friction surface, uniform pressure and uniform wear theories, Design of friction clutches: Disk , plate clutches, cone & centrifugal clutches.

Design of brakes: Band & block brake, Internal expending brakes, Disk brakes.

Module III: Bearings and Lubrication

Types of lubrication, viscosity, hydrodynamic theory, design factors, temperature and viscosity considerations, Reynold's equation, stable and unstable operation, heat dissipation and thermal equilibrium, boundary lubrication, dimensionless numbers, Design of journal bearings, Rolling-element Bearings: Types of rolling contact bearing, bearing friction and power loss, bearing life; Radial, thrust & axial loads; Static & dynamic load capacities; Selection of ball and roller bearings; lubrication and sealing.

Module IV: Springs

Design of helical compression and tension springs, consideration of dimensional and functional constraints, leaf springs and torsion springs; fatigue loading of springs, surge in spring; special springs.

Module V: Design of I.C. Engine components

Selection of type, general design consideration, design of cylinder, cylinder liner, cylinder head, pistons, connecting rod, crank shaft, valves gears mechanism, flywheel.

Examination Scheme:

Components	Other Components	Attendance	MTE	ESE
Weight age (%)	10	5	15	70

Text & References:

Text:

- Maleeve Hartman and O.P. Grover, "Machine Design", CBS Publication & Publishers.
- V.B Bhandari, "Machine Design", Tata McGraw Hill.
- P.C. Sharma and D.K Aggarwal., "Machine Design", S.K. Kataria & Sons.

References:

• Mahadevan, "Design Data Book", CBS Publication & Publisher

MICROPROCESSOR SYSTEMS

Course Code: BTM 602 L:02 C:02

Course Objective:

This course deals with the systematic study of the Architecture and programming issues of 8085-microprocessor family. The aim of this course is to give the students basic knowledge of the above microprocessor needed to develop the systems using it.

Course Contents:

Module I: Introduction to Microcomputer Systems

Introduction to Microprocessors and microcomputers, Study of 8 bit Microprocessor, 8085 pin configuration, Internal Architecture and operations, interrupts, Stacks and subroutines, various data transfer schemes.

Module II: ALP and timing diagrams

Introduction to 8085 instruction set, advance 8085 programming, Addressing modes, Counters and time Delays, Instruction cycle, machine cycle, T-states, timing diagram for 8085 instruction.

Module III: Memory System Design & I/O Interfacing

Interfacing with 8085.Interfacing with input/output devices (memory mapped, peripheral I/O), Cache memory system. Study of following peripheral devices 8255, 8253, 8257, 8255, 8251.

Module IV: Architecture of 16-Bit Microprocessor

Difference between 8085 and 8086, Block diagram and architecture of 8086 family, pin configuration of 8086, Minimum mode & Maximum mode Operation. Internal architecture of 8086, Bus Interface Unit, Register Organization, Instruction Pointer, Stack & Stack pointer, merits of memory segmentation, Execution Unit, Register Organization.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

Text & References:

Text:

- Ramesh. S. Gaonkar, "Microprocessor architecture Programming and Application with 8085" Penram International Publishing, 4th Edition
- B.Ram, "Fundamentals of microprocessors and microcomputer" Dhanpat Rai, 5th Edition.
- Douglas V Hall.

- M. Rafiquzzaman, "Microprocessor Theory and Application" PHI 10th Indian Reprint.
- Naresh Grover, "Microprocessor comprehensive studies Architecture, Programming and Interfacing" Dhanpat Rai, 2003.
- Gosh," 0000 to 8085" PHI.

FLUID POWER SYSTEMS

Course Code: BTM 603 L:2,T:1, C:3

Course Objective:

Fluid power systems cover generation, transmission, and control applications of power by using pressurized fluids. This course imparts the knowledge of different fluid power systems (pneumatic and hydraulic) which are used in industries and hydro power plants.

Course Contents:

Module I: Introduction

Euler's equations for turbo machines; impulse and reaction forces due to fluid systems on stationery and moving system of vanes; jet propulsion.

Module II: Water & Gas Turbines

Classification: Pelton, Francis, Propeller and Kaplan turbines; velocity triangles; efficiency; draft tubes, governing.

General aspect of gas turbine, Jules cycle, Brayton cycle, classification, merits of gas turbine, open-cycle gas turbine, closed cycle gas turbine, Inter cooling, Reheating, Re-generation in gas turbine.

Module III: Pumps

Centrifugal pumps, velocity triangles, efficiency, turbine pumps, axial and mixed flow pumps.

Module IV: Fluid Machines

Similarity laws applied to roto dynamic machines; specific speed, unit quantities; characteristic curves; use of models; cavitations and attendant problems in turbo machines; selection of turbines hydroelectric plants.

Module V: Hydraulic Power Transmission

Transmission of hydraulic power through pipe lines; water hammer; precautions against water hammer in turbine and pump installations.

Module VI: Fluid Systems

Hydraulic press, hydraulic accumulator, Hydraulic intensifier, Hydraulic ram, Hydraulic lift, Hydraulic crane, Positive pumps ,gear , fluid coupling and torque converter,

Pneumatic Power: comparison of pneumatic and hydraulic Systems.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

Text & References:

Text:

- Gupta, S. C., Fluid Mechanics and Hydraulic Machines, Pearson Education, 2007
- R.K. Bansal, "Fluid Mechanics & Hydraulic Machines", Laxmi Publications (P) Ltd., 2002.

- Dr. D.S. Kumar, "Fluid Mechanics & Fluid Power Engineering", S.K. Kataria & Sons, 2001
- D.R. Malhotra & N.K. Malhotra, "The Fluid Mech. & Hydraulics", Satya Prakashan, 2001
- V.P. Gupta, Alam Singh, Manish Gupta, "Fluid Mechanics, Fluid Mechanics & Hydraulics", CBS Publishers; 1999.

METAL CUTTING AND TOOL DESIGN

Course Code: BTM 604 L:03 C:03

Course Objective:

Metal cutting involves removing metal through machining operations. Machining traditionally takes place on lathes, drill presses, and milling machines with the use of various cutting tools. Successful machining also requires knowledge about the material being cut. This course is designed in such way that it explains all aspects (process and tools) of metal cutting. The course also covers the common tooling setups and operations as well as specialized applications for the more experienced users.

Course Contents:

Module I: Introduction

Basic shape of cutting tools, Function of different angles of cutting tools, tool geometry and Nomenclatures-ASA, ORS systems, Conversion of angles, Tool Materials.

Module II: Mechanism of chip formation

Fracture & yielding mechanism, Types of chips, Factors involved in chip formation analysis, shear plane in flat chips, chip formation in drilling and milling.

Module III: Mechanism of metal cutting

Force system during turning, merchant circle diagram, velocity relationship, stress in conventional shear plane, Energy of cutting process, Ernst& merchant angle relationship, Lee-Shafer relationship, measurement of forces, Heat generation and temperature distribution in metal cutting.

Module IV: Theory of Tool wears

Criteria of wear, machinability and tool life, Flank wear, Crater wear, Taylor's tool life equation, causes and mechanism of tool failure, cutting fluid, Economics of metal machining.

Module V: Design for sheet metal works

Press working Terminology, press operation, types of dies, clearance, cutting forces, methods of reducing cutting forces, minimum diameter of piercing, center of pressure, Drawing dies-blank diameter, drawing force.

Module VI: Jigs and Fixture design

Important considerations in jig and fixture design, Locating and clamping, principles for location purposes, principles for clamping purposes, design principles for jigs and fixtures.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

Text & References:

Text:

• A Bhattacharya, "Metal cutting theory& practice", C.B. Publication

- Geoffrey Boothroyd, "Fundamentals of Metal Machining & Machine Tools", Tata McGraw Hill Kogakusha Ltd
- P.N. Rao, "Manufacturing Technology", Tata McGraw Hill Publication Ltd.
- Dr. P.C. Pandey & C.K. Singh, "Production Engg. Sciences", Standard Publisher. Distributors.
- Dr. B.J. Ranganath, "Metal Cutting & Tool Design" Vikas Publishing House Pvt. Ltd.

IC ENGINES

Course Code: BTM 605 L:03 C:03

Course Objective:

This course provides an in-depth knowledge of the functioning of IC Engine & Gas Turbine, and also deals with the combustion techniques used for various fuels. This course finds immense application in automobile industry and gas-operated power plants.

Course Contents:

Module I: Fundamentals

Development of IC engine, Classification, Working Cycles, Indicator diagram, comparison of SI Engine and CI Engine, two stroke and four-stroke engine, Valve timing diagram of SI and CI engine.

Module II: Air Standard Cycle

Assumptions in air standard cycle & fuel-air cycle, fuel-air cycle calculations, factors influencing fuel-air cycle, effects of variable specific heats, dissociation.

Module III: Fuel and Combustion

Combustion of SI engine, ignition limits, normal combustion, abnormal combustion, effect of engine Variable in ignition lag, spark advance and factors affecting ignition timing, pre-ignition, theory, and factors affecting detonation, PN, HUCR. Combustion in CI engine, fundamentals of combustion process in Diesel engine, delay period, diesel knock, and cold starting of CI engine. IC engine Fuel, combustion equations, theoretical air and excess air, stoichiometric air fuel ratio, desirable Properties of good IC engine fuels knock rating of SI engine fuel.

Module IV: Performance & Testing

Testing and performance of IC engine, performance parameters, basic measurement, engine Performance curve, fuel consumption, load outputs, engine power, heat balance.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

Text & References:

Text:

- Ganesan, V. Internal Combustion Engine, Tata McGraw-Hill.
- Mathur, M.L. and Sharma, R.P. Internal Combustion Engine. Dhanpat Rai Publication
- Vladimir Leonidas Maleev. Internal-combustion Engines, Theory and Design. McGraw-Hill.

- Lester Clyde Lichty, Robert Leroy Streeter. Internal Combustion Engines, McGraw-Hill
- Wallace Ludwig Lind. Internal-combustion Engines: Their Principles and Applications to Automobile, Aircraft, Ginn.
- Edward Frederic Obert, Burgess Hill Jennings, Internal Combustion Engines: Analysis and Practice
- Joseph Albert Polson. Internal Combustion Engines, Chapman & Hall, limited
- Rolla Clinton Carpenter, Herman Diederichs. Internal Combustion Engines, Their Theory Construction and Operation. Van Nostrand companies
- John Benjamin Heywood. Internal Combustion Engine Fundamentals. McGraw-Hill

MACHINE DESIGN-II LAB

Course Code: BTM 621 P:2 C:1

Course Contents:

Design and drawing based upon the course Machine Design II such as automotive transmission, brakes, clutches connecting rod, I.C. engine piston, connecting rod, hydraulie rivet, mechanical hoist etc.

Examination Scheme:

IA			E	E	
A	PR	LR	V	PR	V
5	10	10	5	35	35

MICROPROCESSOR SYSTEMS LAB

Course Code: BTM 622 P:02C:01

Course Contents:

Name of Experiments:

- 1 Set up a dimension by slip gauges (example 36.936; 14.727.....) Measure this set up by micrometer (least count 0.01) several times and read dimensions. Find statistical mean and record the expected variation between the actual dimension and dimension measured by micrometer.
- 2 To check the roundness of a circular bar with the help of dial gauge.
- 3 Mill a component to dimension (23, 57.6,...). Set up a comparator by slip gauge set to this dimension. Check component deviation by the comparator and record the deviation. Measure several times and obtain the mean value.
- 4 Check the bore in a component by a bore-indicator. Set the bore indicator by micrometer and measure the deviation in the bore. Measure several times and obtain the mean value at three positions along the length of the bore.
- 5 Set up a sine bar for measuring the angle of an inclined surface (of a bracket, milling cutter arbor with 7/24 taper,). Measure the angle several times and record the mean value. Use height gauge wherever necessary.
- 6 Check angular dimension of a dovetail guide way by measuring across rollers.

 Check the included angle of a V block (90°, 60°, ...) / or a machined groove by measuring over a roller using height gauge and parallel blocks/slip gauges.
- Measure the straightness of a surface (surface plate; guide way of machine tool) by using straight edge and dial gauge and dial gauge stand. Set up straight edge on jacks such that dial reading at each end coincide. Move the dial stand along the straight edge. Record readings at 50 mm interval and draw a plot. Obtain maximum deviation which is the straightness.
- 8 Measure straightness using a spirit level. Place spirit level at an initial position and note level reading. Move the level on a straight line and take readings at 50 mm intervals. Plot the difference from the original reading and obtain the straightness value.
- 9 Draw a trapezoidal and any other profile in AutoCAD to 1:1 scale. On a steel plate make the profile by fitting and filing. Set up the drawing on profile projector. Check the component and note deviations. Correct the profile and recheck. Make the profile as close to the required one.
- 10 To machine a given surface and study its roughness characteristics
- 11 To measure the geometry of a screw using profile projector
- 12 To study the cutting tool geometry using tool makers microscope

Examination Scheme:

IA				E	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

FLUID POWER SYSTEMS LAB

Course Code: BTM 623 P:2, C:01

Course Contents:

- To conduct a test on Centrifugal Pump and plot its characteristics
- To Plot the characteristics of Pelton turbine.
- To conducts an experiment on Francis turbine.
- To study the effect of a draft tube on reaction turbines.
- To find the friction factor for flow through pipes
- To study the hydraulic controls rig.
- To conduct an experiment for verifying model laws.
- To study the cavitations phenomenon in turbines.
- Study of hydraulic couplings and torque converters.

Examination Scheme:

IA			H.	E	
A	PR	LR	V	PR	V
5	10	10	5	35	35

METAL CUTTING AND TOOL DESIGN LAB

Course Code: BTM 624 P:02 C:01

Course Contents:

Name of Experiments:

- 1. Step and taper turning on lathe machine
- 2. To make a hexagonal headed bolt on a milling machine.
- 3. To make a job on a shaper.
- 4. To study the Kinematics design of workshop machines.
- 5. To make a job on drilling machine as per given specifications.
- 6. To measure cutting forces on a single point cutting tool
- 7. To measure cutting parameters for multipoint cutting tool.
- 8. Study of a punch and die set.
- 9. Study of a jig and fixture.
- 10. Fixture fabrication with case study.
- 11. Study of formation of chips during turning and shaping operations on samples of C.I., M.S., Brass, Cu & aluminum.
- 12. Determination of the life of the cutting tool used on lathe for various cutting speeds, feeds and different work piece materials.

Examination Scheme:

IA				L L	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

 $Note: IA-Internal\ Assessment,\ EE-\ External\ Exam,\ PR-\ Performance,\ LR-\ Lab\ Record,\ V-\ Viva.$

POWER PLANT PRACTICES

Course Code: BTM 606 L:03 C:03

Course Objective:

The objective of this course is that the students come to know different ways of producing energy such as thermal energy from gas and steam, hydraulic energy nuclear energy, non conventional source of energy from wind, solar and tidal. And their different uses in productive works.

Course Contents:

Module I: Steam Generator Plant

Fuel handling systems, Indian coals, combustion of coal in furnaces; fluidized bed combustion, economizer; dust collectors; ash disposal, fans and draft systems.

Module II: Turbine Plant

Layout of turbine plant room, corrosion in condensers and boilers, feed water treatment; feed heating; cooling water systems and cooling towers.

Module III: Control

Important instruments on steam generator and turbine; drum water level control, combustion control and super heat temperature control; testing of power plants and heat balance.

Module IV: Other Power Plant

General layout of turbine power plants, Nuclear power plants, power reactors and nuclear steam turbines; handling of nuclear waste and safety measures, peak load power generation methods.

Module V: Economics

Planning for power generation in India, super thermal power plants, estimation of cost of power generation; choice of plant site.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

Text & References:

- Arora & Domkundwar, "A course in Power Plant Engineering", Dhanpat Rai & Sons
- Black Veatch, "Power Plant Engineering", CBS Publisher

INDUSTRIAL AUTOMATION AND CONTROL

Course Code: BTM 607 L:03 C:03

Course Objective:

The objective of this course to identify potential areas for automation and justify need for automation and to select suitable major control components required to automate a process or an activity.

Course Contents:

Unit I

Introduction: Automation in Production System, Principles and Strategies of Automation, Basic Elements of an Automated System, Advanced Automation Functions, Levels of Automations. Flow lines & Transfer Mechanisms, Fundamentals of Transfer Lines.

Unit II

Material handling and Identification Technologies: Overview of Material Handling Systems, Principles and Design Consideration, Material Transport Systems, Storage Systems, Overview of Automatic Identification Methods, Automated Manufacturing Systems.

Unit III

Quality Control Systems: Traditional and Modern Quality Control Methods, SPC Tools, Inspection Principles and Practices, Inspection Technologies.

Unit IV

Control Technologies in Automation: Industrial Control Systems, Process Industries versusDiscrete-Manufacturing Industries, Continuous Versus Discrete Control, Computer Process and its Forms.

Unit V

Modeling and Simulation for Plant Automation: Introduction, need for system Modeling, Building Mathematical Model of a Plant, Modern Tools & Future Perspective. Industrial Control Applications: Cement, Thermal, Water Treatment & Steel Plants

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

Text &reference book

- M.P.Groover(2009),"Automation, Production Systems and Computer Integrated manufacturing", Pearson Education.5th edition.
- Krishna Kant(2010),"Computer Based Industrial Control", EEE-PHI, 2nd edition.
- Viswanandham (2013), Performance Modeling of Automated Manufacturing Systems" PHI, 1st edition.

COMMUNICATION SKILLS - IV

Course Code: BCS 601 L:01 C:01

Course Objective:

To enhance the skills needed to work in an English-speaking global business environment.

Course Contents:

Module I: Business/Technical Language Development

Advanced Grammar: Syntax, Tenses, Voices

Advanced Vocabulary skills: Jargons, Terminology, Colloquialism

Individualised pronunciation practice

Module II: Social Communication

Building relationships through Communication Communication, Culture and Context Entertainment and Communication Informal business/ Technical Communication

Module III: Business Communication

Reading Business/ Technical press Listening to Business/ Technical reports (TV, radio) Researching for Business / Technology

Module IV: Presentations

Planning and getting started Design and layout of presentation Information Packaging Making the Presentation

Examination Scheme:

Components	CT1	CT2	CAF	V	GD	GP	A
Weightage (%)	20	20	25	10	10	10	5

CAF – Communication Assessment File

GD – Group Discussion

GP - Group Presentation

- Business Vocabulary in Use: Advanced Mascull, Cambridge
- Business Communication, Raman Prakash, Oxford
- Business Communications, Rodgers, Cambridge
- Working in English, Jones, Cambridge
- New International Business English, Jones/Alexander, Cambridge

BEHAVIOURAL SCIENCE - VI (STRESS AND COPING STRATEGIES)

Course Code: BSS 601 L:01 C:01

Course Objective:

To develop an understanding the concept of stress its causes, symptoms and consequences.

To develop an understanding the consequences of the stress on one's wellness, health, and work performance.

Course Contents:

Module I: Stress

Meaning & Nature

Characteristics

Types of stress

Module II: Stages and Models of Stress

Stages of stress

The physiology of stress

Stimulus-oriented approach.

Response-oriented approach.

The transactional and interact ional model.

Pressure – environment fit model of stress.

Module III: Causes and symptoms of stress

Personal

Organizational

Environmental

Module IV: Consequences of stress

Effect on behaviour and personality

Effect of stress on performance

Individual and Organizational consequences with special focus on health

Module V: Strategies for stress management

Importance of stress management

Healthy and Unhealthy strategies

Peer group and social support

Happiness and well-being

Module VI: End-of-Semester Appraisal

Viva based on personal journal

Assessment of Behavioural change as a result of training

Exit Level Rating by Self and Observer

Examination Scheme:

Components	SAP	A	Mid Term Test (CT)	VIVA	Journal for Success (JOS)
Weightage (%)	20	05	20	30	25

- Blonna, Richard; Coping with Stress in a Changing World: Second edition
- Pestonjee, D.M, Pareek, Udai, Agarwal Rita; Studies in Stress and its Management
- Pestonjee, D.M.; Stress and Coping: The Indian Experience
- Clegg, Brian; Instant Stress Management Bring calm to your life now

FRENCH - VI

Course Code: FLF 601 L:02 C:02

Course Objective:

To strengthen the language of the students both in oral and written so that they can:

- i) express their sentiments, emotions and opinions, reacting to information, situations;
- ii) narrate incidents, events;
- iii) perform certain simple communicative tasks.

Course Contents:

Module D: pp. 157 – 168 – Unité 12

Unité 12: s'évader

- 1. présenter, caractériser, définir
- 2. parler de livres, de lectures
- 3. préparer et organiser un voyage
- 4. exprimer des sentiments et des opinions
- 5. téléphoner
- 6. faire une réservation

Contenu grammatical:

- 1. proposition relative avec pronom relatif "qui", "que", "où" pour caractériser
- 2. faire + verbe

Examination Scheme:

Components	CT1	CT2	С	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• le livre à suivre: Campus: Tome 1

GERMAN - VI

Course Code: FLG 601 L:02 C:02

Course Objective:

To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.

To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany

Introduction to Advanced Grammar and Business Language and Professional Jargon

Course Contents:

Module I: Adjective endings

Adjective endings in all the four cases discussed so far Definite and indefinite articles Cases without article

Module II: Comparative adverbs

Comparative adverbs as and like

Module III: Compound words

To learn the structure of compound words and the correct article which they take Exploring the possibility of compound words in German

Module IV: Infinitive sentence

Special usage of 'to' sentences called zu+ infinitive sentences

Module V: Texts

A Dialogue: 'Ein schwieriger Gast' A text: 'Abgeschlossene Vergangenheit'

Module VI: Comprehension texts

Reading and comprehending various texts to consolidate the usage of the constructions learnt so far in this semester.

Module VII: Picture Description

Firstly recognize the persons or things in the picture and identify the situation depicted in the picture; Secondly answer questions of general meaning in context to the picture and also talk about the personal experiences which come to your mind upon seeing the picture.

Examination Scheme:

Components	CT1	CT2	C	I	\mathbf{V}	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs

SPANISH - VI

Course Code: FLS 601 L:02 C:02

Course Objective:

To enable students acquire working knowledge of the language; to give them vocabulary, grammar, voice modulations/intonations to handle everyday Spanish situations in Present as well as in Present Perfect Tense with ease.

Course Contents:

Module I

Revision of the earlier modules

Module II

Present Perfect Tense

Module III

Commands of irregular verbs

Module IV

Expressions with Tener que and Hay que

Module V

En la embajada

Emergency situations like fire, illness, accident, theft

Examination Scheme:

Components	CT1	CT2	С	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Español, En Directo I A
- Español Sin Fronteras

CHINESE - VI

Course Code: FLC 601 L:02 C: 02

Course Objective:

Chinese emperor Qin Shi Huang – Ti who built the great wall of China also built a network of 270 palaces, linked by tunnels, and was so afraid of assassination that he slept in a different palace each night. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I

Drills

Dialogue practice

Observe picture and answer the question.

Pronunciation and intonation.

Character writing and stroke order.

Module II

Going out to see a science exhibition

Going to the theatre.

Train or Plane is behind schedule.

Indian Economy-Chinese Economy

Talking about different Seasons of the Year and Weather conditions. Learning to say phrases like-spring, summer, fall, winter, fairly hot, very cold, very humid, very stuffy, neither hot nor cold, most comfortable, pleasant etc.

Module III

Temperature – how to say – What is the temperature in May here?

- How is the weather in summer in your area?
- Around 30 degrees
- Heating, air-conditioning
- Is winter is Shanghai very cold?

Talking about birthdays and where you were born?

The verb "shuo" (speak) saying useful phrases like speak very well, do not speak very well, if speak slowly then understand if speak fast then don't understand, difficult to speak, difficult to write, speak too fast, speak too slow, listen and can understand, listen and cannot understand ... etc.

Tell the following in Chinese – My name is I was born in ... (year). My birthday is Today is ... (date and day of the week). I go to work (school) everyday. I usually leave home at . (O'clock). In the evening, I usually (do what)? At week end, I On Sundays I usually It is today..... It will soon be my younger sisters birthday. She was born in (year). She lives in (where). She is working (or studying)...... where... She lives in (where.)

Examination Scheme:

Components	CT1	CT2	С	I	V	A
Weightage (%)	20	20	20	20	15	5

C-Project+Presentation

I – Interaction/Conversation Practice

Text & References:

• Elementary Chinese Reader Part-2, 3; Lesson 47-54

OPERATIONS RESEARCH

Course Code: BTM 701 L:3 C:3

Course Objective: In a rapidly changing environment an understanding is sought which will facilitate the choice and the implementation of more effective solutions, which, typically, may involve complex interactions among people, materials and money. Organizations may seek a very wide range of operational improvements - for example, greater efficiency, better customer service, higher quality or lower cost. Whatever the business, engineering aim, Operation Research can offer the flexibility and adaptability to provide objective help. This course introduces students to the principles of operational research.

Course Contents:

Module I: Introduction, Definition of operation Research, Characteristics and limitations of operation Research, Applications, advantages and disadvantages of operation Research, Linear Programming Formulation of problem. Graphical and Simplex method for maximization and minimization, Big M Method, Duality Theory and Sensitivity Analysis

Module II: Transportation Models, NWCR Method, Least Cost Method, Row Minima And Column Minima Method, Stepping Stone Algorithm, MODI Method And Vogel'S Approximation Method (VAM), Balanced, Unbalanced Transportation Problems and Problems of Degeneracy and Maximization.

Module III: Assignment Models, Hungarian Method, Assignment model for maximization and traveling salesman problems, Industrial Problems

Module IV: Queuing Theory Basic structured, Terminology, classification, (M/M/I): $(FCFS/\infty/\infty)$ Model, Birth and death process. Sequencing: Processing in jobs through machines with the same processing order. Processing of 2 jobs through machines with each having different processing order.

Module V: Network Models Introduction to PERT and CPM, Fundamental Concept of Network Models and Construction of Network Diagrams, PERT Activity, Time Estimates, Critical Path and Project Time Duration, Probability of Completing The Project On Or Before Specified Time, Float Of An Activity.

Module VI: Games Theory Zero Sum Two Person Competitive Games, Minimax And Maximini Principle Arithmetic, Algebraic, Matrix Algebra Method, Solution By Dominance, Sub Game, Graphical And Linear Programming Method.

EXAMINATION SCHEME:

EMILITATION O	CIIIIII			
Components	Other	Attendance	MTE	ESE
	Components			
Weightage (%)	10	5	15	70

- HM Wagner, Principles of Operations Research, Prentice Hall
- Heizer, J. & Render B., Operations Management, Pearson Education (8/e), 2006
- PK Gupta and DS Hira, Operations Research, S. Chand & Co.
- Taha, Introduction to Operation Research, TMH
- F.S. Hiller and G.I. Libermann, Introduction to Operation Research, Holden Ray.

MECHATRONICS

Course Code: BTM 702 L:03 C:03

Course Objective:

Mechatronics is basically combination of mechanical and electronics engineering. With growing demands of automation of different mechanical operation this subject fulfills the needs. Main objective of this course is to provide knowledge of different combinations of mechanical and electronics processes and various software used in it.

Course Contents:

Module I: Introduction

Measurement systems, control systems, Microprocessor-based controllers, Sensors and tranducers, Signal conditioning processes.

Module II: Actuation Systems

Pneumatic and hydraulic actuation systems, Directional control valves, pressure control valves, process control valves.

Module III: System Models

Mathematical models, Mechanical system building blocks, modeling dynamic systems, First order systems, Second order systems.

Module IV: Principles of Feedback & Intelligent Control

Control Systems, Open & Closed loop control Systems, Controllers, Artificial Neural Network.

EXAMINATION SCHEME:

Components	Other	Attendance	MTE	ESE
	Components			
Weightage (%)	10	5	15	70

Text & References:

Text:

• W. Bolton, "Mechatronics", Pearson Education Ltd., 2003.

- Mohammad Ali Mazidi Janice Gillispier Mazidi, "The 8051 Microcontroller", Pearson Education Inc., 2004.
- Gary Dunning, "Introduction to Programmable Logic Controllers", Thomson Asia P. Ltd., Singapore, 1998.
- Gopal K. Dubey, "Fundamentals of Electrical Drives", Narosa Publishing House, 2001.
- Charles H. Roth, "Jr. Fundamentals of Logic Design", Jaico Publishing House, 2001.
- "HMT Mechatronics", Tata McGraw Hill Publishing Co. Ltd., 2001.
- Devdas Shetty, Richard A. Kolk "Mechatronics System Design", Thomson Asia Pvt. Ltd., Singapore, 2001.
- A.K. Tayal, "Instrumentation & Mechanical Measurements", Galgotia Publication Pvt. Ltd., 2003.
- D. Rana Durgaiah, "Fluid Mechanics & Machinery", New Age Int. Publishers, 2004.
- Nitaigour Premchand Mahalik, "Mechatronics Principles, Concepts & Application", Tata McGraw Hill Publishing Co.Ltd, 2003.
- Mikell P. Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", 2nd Edition, Prentice Hall, 2001.

ELECTRICAL MACHINES

Course Code: BTM 703 L:02 C:02

Course Objective:

Electrical Machines provides the backbone for successful and uninterrupted smooth functioning of any industry. Knowledge of this subject in any engineering branch is vital in process industry. The course covers the machines e.g. Motors & generators characteristics and classifications related to mechanical & automation as well as recent development engineering applications. Successful completion of this course will be very helpful for the students who wish to join challenging industry.

Course Contents:

Module I

Introduction to Subject, Some important fundamentals, Electrical Power generation, D C Machines, Construction Features, Principle of Operation.

Module II

DC Generator Analysis & DC Motor, Classification & Characteristics & Analysis. Speed Torque Characteristics, Speed control of D C Motor. Application of D C Motor. Starters.

Module III

A C Machines, 3 phase IM, Revolving Magnetic field theory, IM as a transformer, Equivalent Circuit. 3 phase Synchronous Machines, Synchronous Motor, Synchronous Generator, Equivalent Ckt.

Module IV

Single phase Induction Motor and classification, Double Revolving Field theory, Characteristics & typical Applications. Fractional Kilo Watt Hour Motor, Stepper Motor.

EXAMINATION SCHEME:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

Text & References:

Text:

- I J Nagrath & D P Kothari. "Electrical Machines". TMH
- Irvin Kosow, "Electrical Machines & Transformers", PHI.

References:

B L Theraja "Electrical Engineering".

OPERATIONS RESEARCH LAB

Course Code: BTM 721 C:01 P:02

Course Contents:

- 1. Program on C or C++ for Linear Programming.
- 2. Program on C or C++ for Simplex Problem.
- 3. Program on C or C++ for Assignment Problem.
- 4. Program on C or C++ for Transportation Problem.
- 5. Program on C or C++ for PERT, CPM Problem.
- 6. Program on C or C++ for Sequencing Problem.

Examination Scheme:

IA				E	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

MECHATRONICS LAB

Course Code: BTM 722 P:02 C:01

Course Contents:

Name of Experiments:

- 1. To make the sequential operation A⁺ B⁺ A⁻ B⁻; A⁺, B⁺, B⁻ A⁻ using Pneumatic trainer
- 2. For the above write a ladder logic giving time delays
- 3. Design a Pneumatic Circuit for clamping type & operated by PLC
- 4. To make the sequential operation A⁺, B⁺, A⁻, B⁻; A⁺, B⁺, B⁻ A⁻ using Hydraulic trainer kit.
- 5. For the above write a ladder logic giving time delays
- 6. Design a Hydraulic Circuit for clamping type & operated by PLC
- 7. To make the ladder logic for water level control & reaction vessel to detect different levels of water and switch off the water supply.
- 8. Starter Control & Star Delta Starter for 1/4 HP AC. Motor to demonstrate the use of PLC Motor Starting
- 9. Design Fan operation using PLC
- 10. Design n a Lift Control
- 11. Design a pick & Place
- 12 Design Sequential Switching Motors

Examination Scheme:

IA				н'	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

ELECTRICAL MACHINES LAB

Course Code: BTM 723 P:02 C:01

Course Contents:

S. NO.	NAME OF THE EXPERIMENTS
1.	Speed Control of DC Shunt Motor
2.	To obtain magnetization characteristics of
	1) Separately excited DC Generator
	2) Shunt Generator
3.	To obtain the load characteristics
	1) DC Shunt Motor
	2) Cumulative Compound generator
4.	To conduct Swinburne Test on a DC. Shunt Motor and hence obtain its efficiency at full load.
5.	To perform No Load Test and blocked rotor test on a three phase Induction motor and hence
	determine its equivalent circuit parameters.
6.	To perform load test on a three phase Induction Motor and obtain its various performance
	characteristics.
7.	Retardation Test on a three phase induction motor and calculate its moment of inertia.
8.	To perform No Load and Blocked Rotor Test on a single phase Induction motor and hence
	determine its equivalent circuit parameters.
9.	To perform open circuit and short circuit test on a three phase alternator and hence determine its
	voltage regulation by synchronous Impedance Method.
10.	To obtain V curves of a three phase synchronous motor at no load.

Examination Scheme:

IA				H,	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

INDUSTRIAL TRAINING EVALUATION

Course Code: BTM 750 C:06

Methodology:

Practical training is based on the theoretical subjects studied by students. It can be arranged within the college or in any related industrial unit. The students are to learn various industrial, technical and administrative processes followed in the industry. In case of on-campus training the students will be given specific task of fabrication/assembly/testing/analysis. On completion of the practical training the students are to present a report covering various aspects learnt by them and give a presentation on same.

Examination Scheme:

Total	100
Presentation	25
Viva	15
Training Report	40
Feedback from industry/work place	20

SEMINAR

Course Code: BTM 760 C:03

Methodology:

Topics of project are to be based on the latest trends, verifying engineering concepts /principle and should involve elementary research work. For that, students need to select their project title and basic requirements to accomplish their project. The projects may involve design, fabrications, testing, computer modeling, and analysis of any engineering problem. At last, the students have to submit a report and give presentation the methodology used to accomplish their project.

Examination Scheme:

Total	100
Synopsis Presentation	25
Viva	25
Synopsis Report	50

AUTOMOTIVE ENGINEERING

Course Code: BTM 704 L:03 C:03

Course Objective:

This course emphasizes on constructional details of automotive vehicles which includes – Basic structure, engine, transmission systems, suspension systems, steering system, braking systems and wheels&tyres.

Course Contents:

Module I

Introduction, Components of an automobile, basic engine terminology, engine cycles, working of an IC engine. Basic engine design considerations, constructional details of C.I. and S.I. engines. crank shafts, connecting rod, piston, values, cams, manifolds, air cleaners, mufflers, radiators, and oil filters.

Module II: Transmission System

Description and working of manually operated gearboxes like sliding mesh, constant mesh, synchromesh and epicycle; hydraulic torque convertor and its construction working and performance, sem-automatic and fully automatic transmission, Hydramatic transmission, analysis of differentials, live axles, construction working and requirements of overdrive.

Module III:Steering System

Introduction, Front axle, wheel alignment, Steering geometry, steering mechanisms, Ackerman steering, center point steering, power steering.

Module IV: Suspension

Objective, requirement, function, types Shock absorbers, Independent suspension, Stabilizer, air suspension, Hydroelastic suspension, Hydragas interconnected suspension.

Module V

Principle, braking requirements, brake efficiency, fading of brakes, types of brakes, bleeding of brakes, brake fluid.

Examination:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

- Kirpal Singh, "Automobile Engg.", Vol. I & II, Standard Publishers, 2004
- N.K. Giri, "Automotive Mechanics", Khanna Publishers
- Narang G.B.S., "Automobile Engg.", Khanna Publishers
- Srinivasan, "Automotive Engines", Tata McGraw Hill
- K.K. Jain & R.B. Asthana, "Automobile Engineering", Tata McGraw Hill
- James D. Halderman and Chase D. Mitchell Jr., Automotive Engines- Theory and Servicing, Pearson Education, 2007

AUTOMOTIVE ENGINEERING LAB

Course Code: BTM 724 P:02 C:01

Course Contents:

List of Experiments:

- 1. Drawing Valve Timing Diagram
- 2. Determination of Firing Order of engine
- 3. Specification of engine
- 4. Study of different parts of engine
- 5. Study of Clutch
- 6. Study of Hydraulic Brake System
- 7. Study of Carburetor
- 8. Study of various parts of Auxiliary systems
- 9. Study of Wheel
- 10. Study of emission system
- 11. Study of steering system

Examination Scheme:

IA				E	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

ROBOTICS

Course Code: BTM 705 L: 03, C: 03

Course Objectives:

- To understand the basic concepts associated with the design and functioning and applications of Robots.
- To study about the drives and sensors used in Robots
- To learn about analysing robot kinematics and robot programming

Module I: Fundamentals of Robot

Robot definition, Robot Anatomy, Co-ordinate Systems, Work Envelope, types and classification, Specifications Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay Load Robot Parts and Functions –Need for Robots – Different Applications

Module II: Robot Kinematics

Forward Kinematics, Inverse Kinematics and Differences; Forward Kinematics and Reverse Kinematics of Manipulators with Two, Three Degrees of Freedom (In 2 Dimensional), Four Degrees of Freedom (In 3 Dimensional) –Deviations and Problems.

Module III: Robot drive systems and End effectors

Pneumatic Drives, Hydraulic Drives, Mechanical Drives, Electrical Drives, D.C. Servo Motors, Stepper Motor, A.C. Servo Motors – Salient Features, Applications and Comparison of Drives

End Effectors –Grippers – Mechanical Grippers, Pneumatic and Hydraulic Grippers, Magnetic Grippers, Vacuum Grippers; Two Fingered and Three Fingered Grippers; Internal Grippers and External Grippers; Selection and Design Considerations

Module IV: Robot Sensing & Vision

Various Sensors and their Classification, Use of Sensors and Sensor Based System in Robotics, Machine Vision System, Description, Sensing, Digitizing, Image Processing and Analysis and Application of Machine Vision System, Robotic Assembly Sensors and Intelligent Sensors.

UNIT IV Robot Programming

Teach Pendant Programming, Lead through programming, Robot programming Languages – VAL Programming – Motion Commands, Sensor Commands, End effecter commands, and Simple programs

Module V: Industrial Applications

Objectives, Automation in Manufacturing, Robot Application in Industry, Task Programming, Basics of AI, Goals of AI Research, AI Techniques, Robot Intelligence and Task Planning, Modern Robots, Future Application and Challenges and Case Studies.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

- M.P.Groover, "Industrial Robotics Technology, Programming and Applications", McGraw-Hill, 2001
- 2. Fu.K.S. Gonzalz. R.C., and Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw-Hill Book Co., 1987
- 3. Yoram Koren, "Robotics for Engineers", McGraw-Hill Book Co., 1992
- 4. Janakiraman. P.A., "Robotics and Image Processing", Tata McGraw-Hill, 1995

ROBOTICS Lab

Course Code: BTM 725 P: 02, C: 01

- 1. Study of different type of links and joints used in robots
- 2. Study of components of robots with drive system and end effectors.
- 3. Determination of maximum and minimum position of links.
- 4. Demonstration of Cartesian/ cylindrical/ spherical robot.
- 5. Demonstration of Articulated/ SCARA robot.
- 6. To study the theory of sensory integration
- verification of transformation (Position and orientation) with respect to gripper and
 World coordinate system
- 8. Virtual modelling for kinematic and dynamic verification any one robotic. Structure using suitable software.

Examination Scheme:

IA			E	E	
A	PR	LR	V	PR	V
5	10	10	5	35	35

COMMUNICATION SKILLS - V

Course Code: BCS 701 L:01 C:01

Course Objective:

To facilitate the learner with Academic Language Proficiency and make them effective users of functional language to excel in their profession.

Course Contents:

Module I

Introduction to Public Speaking Business Conversation Effective Public Speaking Art of Persuasion

Module II: Speaking for Employment

Types of Interview
Styles of Interview
Facing Interviews-Fundamentals and Practice Session
Conducting Interviews- Fundamentals and Practice Session
Question Answer on Various Dimensions

Module III

Resume Writing Covering Letters Interview Follow Up Letters

Module IV: Basic Telephony Skills

Guidelines for Making a Call Guidelines for Answering a Call

Module V: Work Place Speaking

Negotiations

Participation in

Participation in Meetings

Keynote Speeches

Examination Scheme:

Components	CT1	CT2	CAF	V	GD	GP	A
Weightage (%)	20	20	25	10	10	10	5

CAF - Communication Assessment File

GD – Group Discussion

GP – Group Presentation

- Jermy Comfort, Speaking Effectively, et.al, Cambridge
- Krishnaswamy, N, Creative English for Communication, Macmillan
- Raman Prakash, Business Communication, Oxford.
- Taylor, Conversation in Practice,

BEHAVIOURAL SCIENCE - VII (INDIVIDUAL, SOCIETY AND NATION)

Course Code: BSS 701 L :01 C :01

Course Objective:

This course aims at enabling students towards:

- Understand the importance of individual differences
- Better understanding of self in relation to society and nation
- Facilitation for a meaningful existence and adjustment in society
- Inculcating patriotism and national pride

Course Contents:

Module I: Individual differences & Personality

Personality: Definition& Relevance

Importance of nature & nurture in Personality Development

Importance and Recognition of Individual differences in Personality

Accepting and Managing Individual differences (adjustment mechanisms)

Intuition, Judgment, Perception & Sensation (MBTI)

BIG5 Factors

Module II: Managing Diversity

Defining Diversity

Affirmation Action and Managing Diversity

Increasing Diversity in Work Force

Barriers and Challenges in Managing Diversity

Module III: Socialization

Nature of Socialization

Social Interaction

Interaction of Socialization Process

Contributions to Society and Nation

Module IV: Patriotism and National Pride

Sense of pride and patriotism

Importance of discipline and hard work

Integrity and accountability

Module V: Human Rights, Values and Ethics

Meaning and Importance of human rights

Human rights awareness

Values and Ethics- Learning based on project work on Scriptures like- Ramayana, Mahabharata, Gita etc.

Module VI: End-of-Semester Appraisal

Viva based on personal journal

Assessment of Behavioural change as a result of training

Exit Level Rating by Self and Observer

Examination Scheme:

Components	SAP	A	Mid Term	VIVA	Journal for
			Test (CT)		Success (JOS)
Weightage (%)	20	05	20	30	25

- Davis, K. Organizational Behaviour,
- Bates, A. P. and Julian, J.: Sociology Understanding Social Behaviour
- Dressler, David and Cans, Donald: The Study of Human Interaction
- Lapiere, Richard. T Social Change
- Lindzey, G. and Borgatta, E: Sociometric Measurement in the Handbook of Social Psychology, Addison Welsley, US.
- Rose, G.: Oxford Textbook of Public Health, Vol.4, 1985.
- Robbins O.B.Stephen; Organizational Behaviour

FRENCH - VII

Course Code: FLF 701 L:02 C: 02

Course Objective:

Revise the portion covered in the first volume, give proper orientation in communication and culture.

Course Contents:

Module A: Unités 1 – 3: pp. 06 - 46

Contenu lexical: Unité 1: Rédiger et présenter son curriculum vitae

Exprimer une opinion

Caractériser, mettre en valeur

Parler des rencontres, des lieux, des gens

Unité 2: Imaginer - Faire des projets

Proposer - conseiller

Parler des qualités et des défauts

Faire une demande écrite Raconter une anecdote Améliorer son image

Unité 3: Exprimer la volonté et l'obligation

Formuler des souhaits

Exprimer un manque/un besoin

Parler de l'environnement, des animaux, des catastrophes

naturelles

Contenu grammatical:

1. Le passé : passé composé/imparfait

- 2. Pronoms compléments directs/indirects, y/en (idées/choses)
- 3. Propositons relatives introduites par qui, que, où
- 4. Comparatif et superlatif
- 5. Le conditionnel présent
- 6. Situer dans le temps
- 7. Féminin des adjectifs
- 8. La prise de paroles : expressions
- 9. Le subjonctif : volonté, obligation

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• le livre à suivre : Campus: Tome 2

GERMAN - VII

Course Code: FLG 701 L:02 C: 02

Course Objective:

To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.

To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany

Introduction to Advanced Grammar and Business Language and Professional Jargon

Course Contents:

Module I: Dass-Sätze

Explain the use of the conjunction "-that", where verb comes at the end of the sentence

Module II: Indirekte Fragesätze

To explain the usage of the "Question Pronoun" as the Relative Pronoun in a Relative Sentence, where again the verb falls in the last place in that sentence.

Module III: Wenn-Sätze

Equivalent to the conditional "If-" sentence in English. Explain that the verb comes at the end of the sentence.

Module IV: Weil-Sätze

Explain the use of the conjunction "because-" and also tell that the verb falls in the last place in the sentence.

Module V: Comprehension texts

Reading and comprehending various texts to consolidate the usage of the constructions learnt so far in this semester.

Module VI: Picture Description

Firstly recognize the persons or things in the picture and identify the situation depicted in the picture; Secondly answer questions of general meaning in context to the picture and also talk about the personal experiences which come to your mind upon seeing the picture.

Examination Scheme:

Components	CT1	CT2	С	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs

SPANISH - VII

Course Code: FLS 701 L:02 C: 02

Course Objective:

To enable students acquire working knowledge of the language; to give them vocabulary, grammar, expressions used on telephonic conversation and other situations to handle everyday Spanish situations with ease.

Course Contents:

Module I

Revision of earlier semester modules

Module II

Zodiac signs. More adjectives...to describe situations, state of minds, surroundings, people and places.

Module III

Various expressions used on telephonic conversation (formal and informal)

Module IV

Being able to read newspaper headlines and extracts (Material to be provided by teacher)

Module V

Negative commands (AR ending verbs)

Module VI

Revision of earlier sessions and introduction to negative ER ending commands, introduction to negative IR ending verbs

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Español En Directo I A, 1B
- Español Sin Fronteras
- Material provided by the teacher from various sources

CHINESE – VII

Course Code: FLC 701 L:02 C: 02

Course Objective:

The story of Cinderella first appears in a Chinese book written between 850 and 860 A.D. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I

Drills

Dialogue practice

Observe picture and answer the question.

About china part –I Lesson 1,2.

Module II

Pronunciation and intonation

Character Writing and stroke order.

Module III

Ask someone what he/she usually does on weekends? Visiting people, Party, Meeting, After work....etc.

Module IV

Conversation practice

Translation from English to Chinese and vise-versa.

Short fables.

Module V

A brief summary of grammar.

The optative verb "yuanyi".

The pronoun "ziji".

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• "Kan tu shuo hua" Part-I Lesson 1-7

REFRIGERATION AND AIR CONDITIONING

Course Code: BTM 801 L:3 C:3

Course Objective: The aim of this course is to provide the students with the understanding of the basic principles of Refrigeration and Air Conditioning such that they could build simple mathematical models representing the conditioned space and its components used to control environmental conditions. The application of thermodynamics, heat transfer, and fluid mechanics includes an understanding of refrigerants and refrigeration systems, psychometrics, human comfort and air quality, calculation of heating and cooling loads, and heat and mass transfer processes and associated R & AC components and systems.

Course Contents:

Module I:Introduction

Refrigeration, Second law of thermodynamics, Unit of Refrigeration, Reversed Carnot Cycle, Bell Coleman Cycle, Necessity of cooling an aircraft, types of air refrigeration systems, Basic Cycle, Boot Strap Cycle, Regenerative cycle of air refrigeration of aircraft,

Module II: Vapour compression Refrigeration system

Vapour Compression Refrigeration System, various compression refrigeration cycles, and basic components of the plant, factors affecting COP of VCRS, Multiple Compression and Evaporation System, Cascading of VCRS

Module III: Refrigerants

Refrigerants, Classification of Refrigerants, Nomenclature of Refrigerants, Azeotropes, Secondary Refrigerants, Properties and choice of refrigerants, Eco-friendly Refrigerants

Module IV: Vapour Absorption Refrigeration system

Vapour Absorption Cycle, Electrolux System, Steam Jet Refrigeration, Vortex Tube, Application of Refrigeration Systems Cascading, Introduction to Cryogenics

Module V:Psychrometrics

Psychrometrics, Psychrometrics processes, Basic Components of Air conditioning system, comfort air-conditioning, ventilation requirements, cooling and dehumidification system, estimation of cooling and heating loads, air handling, air distribution, duct design, industrial air conditioning.

EXAMINATION SCHEME:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

- CP Arora, Refrigeration and Conditioning, Tata McGraw Hill
- Manohar Prasad, Refrigeration and Conditioning, Wiley Eastern Limited
- Jordan and Priester, Refrigeration and Conditioning, Prentice Hall of India
- WF Stoecker, Refrigeration and Conditioning, McGraw Hill.
- RS Rajput, Refrigeration and Air Conditioning, S K Kataria And Sons New Delhi

COMPUTER AIDED MANUFACTURING

Course Code: BTM 802 L: 03, C: 02

Course Objective:

The aim of the course is to impart the students the basic and essential concepts in using Computer Assisted Manufacturing (CAM) and Computer Numerical Control (CNC) machines. Students will learn the basic concepts of manufacturing planning and control. They will be offered hands on experience in using CAM software to design, simulate and write CNC programs.

Course Contents:

Module I: Fundamental of CAM:

CAM - concept and definition, NC (Numerical Control), CNC (Computerized Numerical Control) and DNC (Direct Numerical Control) - concept, features and differences, Advantages and limitations of CNC, Selection criteria for CNC machines.

Module II: CNC Machines:

CNC machines: Types, classification, working and constructional features, Spindle drives and axes drives on CNC machines, working and importance of Slide ways, Re-circulating ball screw, Feedback devices (transducers, encoders), Automatic tool changer (ATC), Automatic pallet changer (APC), CNC axes and motion nomenclature CNC tooling: Tool presetting, Tool holders- types and applications.

Module III: CNC Turning & Machining Centers

CNC turning & machining centers: Types, Features, Axes nomenclature, Specification, Work holding devices - types, working and applications, Tool holding and changing devices - types, working and applications.

Module IV: CNC Part Programming:

Programming format and structure of part programme, ISO G & M codes for turning and milling-applications of important codes, Simple part programming for turning using ISO format having straight turning, taper turning (linear interpolation) and convex/concave turning (circular interpolation), Simple part programming for milling using ISO format. Importance, types, applications and format for: Canned cycles, Macro, Do loops, Subroutine, importance of various compensations: Tool length compensation, Tool radius compensation, Tool offset, APT Programming, Example APT Part Programming(2D Machining only).

Module V:Recent Trends in CAM:

Flexible Manufacturing System (FMS) - concept, evaluation, main elements and their functions, layout and its importance, applications, Computer Integrated Manufacturing (CIM) - Concept, definition, benefits, Robotics-definition, terminology, classification and types, elements and applications.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

Text & References:

Text:

- Mikell P. Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", 2nd Edition, Pentice Hall, 2001.
- Rao, Kundra&Tiwari, "Computer aided Manufacturing" Tata McGraw Hill, 2007.
- Numerical Control: by Koren, Khanna Publisher.

- Mikell P. Groover, Emory W.Zimmers, "CAD/CAM", Pearson Education, 2006.
- P.N. Rao, "CAD/CAM Principles and Applications", Tata McGraw Hill, 2006.

REFRIGERATION AND AIR-CONDITIONING LAB

Course Code: BTM 821 P:2, C:01

Course Contents:

List of Experiments:

- 1. Study of refrigeration testing.
- 2. Study of Air-Conditioning testing.
- 3. To calculate the COP of Refrigerator.
- 4. Study of Ice Making Plant
- 5. Study of Water Cooler.
- 6. To calculate total Heat Load for Air-Conditioning unit.
- 7. To calculate the COP of Heat Pump

EXAMINATION SCHEME:

	IA			Е	E
A	V	LR	TA	PR	V
5	5	10	10	35	35

COMPUTER AIDED MANUFACTURING LAB

Course Code: BTM 822 P: 02, C: 01

Course Contents:

- 1. To conduct briefly study into various aspects of CNC machines.
- 2. To Study the preparatory and miscellaneous function of CNC codes.
- 3. Study exercise on Milling operations:
 - Circular Pocketing
 - Rectangular pocketing
 - Peck Drilling cycle
 - Boring operation
 - End drilling operation
- 4. Study exercise on Turning operations:
 - Simple facing
 - Simple turning operation
 - Step turning operation Circular Pocketing
 - Rectangular pocketing
 - Peek Drilling cycle
 - Boring operation
 - End drilling operation
- 5. Study the work holding and tool holding devices in the CNC lathe and machining centre and draw up their specifications and capacities.

Examination Scheme:

	IA				E
A	PR	LR	V	PR	V
5	10	10	5	35	35

PROJECT

Course Code: BTM 860 C: 12

Methodology

Topics of project are to be based on the latest trends, verifying engineering concepts /principle and should involve elementary research work. The projects may involve design, fabrications, testing, computer modeling, and analysis of any engineering problem. On completion of the practical training the students are to present a report covering various aspects learnt by them and give a presentation on same.

Examination Scheme:

Total	100
Presentation	25
Viva	15
Written Report	20
Literature study/ Fabrication/ Experimentation	40

GEAR TECHNOLOGY

Course Code: BTM 803 L:02, C:02

Course Objective:

The objective of gear technology is to provide information on gears, gear manufacturing, and the gear industry in general. This course includes information about hobbing, shaping, shaving, broaching and other gear manufacturing processes. It also covers gear design, gear engineering and related topics

Course Contents:

Module I: Introduction to gears

Types of gears, Geometric and Kinetics characteristics, Undercutting and interference-correction, Non-Circular gears.

Module II: Gear design

Design of tools to make gear teeth, Kinds and cases of gear failures, Special Design Problems; Center distance problem, profile modification.

Module III: Gear trains

Problem Combined bending and Torsion of pinions with large length to diameter ratio, high speed gearing. Geneva Mechanisms (Analysis & Synthesis),

Gear Trains (Analysis & Synthesis)

Module IV: Gear Set design

Some example of optimal kinematics system Design; Gear Set design Design of sub-system consisting of Geneva wheel and elliptical gears for reduction of maximum acceleration of the wheel.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

Text & References:

Text:

- D.W. Dudley, "Practical Gear Design", Tata McGraw Hill Co. Inc.
- S.S. Rattan, "Theory of Machines", Tata McGraw Hill, 2000

References:

• AGMA (American Gear Manufacturing Association) Standards

MATHEMATICAL MODELING

Course Code: BTM 804 L:02, C:02

Module 1

Modeling of macro and microscopic engineering (mechanical, electrical, electronics and chemical engineering) based advanced case studies (ultra rigorous) problems using first order and second order differential equations, Newton's law of cooling, simultaneous ODEs. Laplace Transforms.

Module 2

Application of complex algebra in computing advanced transient microscopic problems using analytic functions complex variable and Cauchy's theorem, Laurent's expansion, and theory of residues, Contour integration.

Module 3

Rugged Application of Bromwich's integral formula in mathematical modeling. Modeling using error function, gamma and beta function, Definite integrals by contour integration.

Module 4

Multi parameter based independent variable modeling and its effect on dependent variable using Laplace transform method, Separation of variables method, Wave equation, Heat and laplace equations, Orthogonal functions and Sturm-Liouville conditions under steady and unsteady state engineering based applications

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

- 1. Edward A. Bender.. An Introduction to Mathematical Modeling.
- 2. A. C. Fowler.. Mathematical Models in Applied Sciences, Cambridge University Press.
- 3. J. N. Kapoor.. Mathematical Modeling, Wiley eastern Limited.
- 4. S.M. Ross .. Simulation, India Elsevier Publication.
- 5. A.M.Law and W.D.Kelton.. Simulation Modeling and Analysis, T.M.H. Edition.
- 6. Kreyszig, E., "Advanced Engineering Mathematics," 8th ed., John Wiley & Sons, 2000.
- 7. Gupta, S. K., "Numerical Methods for Engineers," New Age International Ltd., New Delhi, 1995.
- 8. Rice, R. G. and Do, D. D., "Applied Mathematics and Modeling for Chemical Engineers", John Wiley & Sons, New York, 1995.

ADVANCED MANUFACTURING MACHINES

Course Code: BTM 805 L:02, C:02

Module - I Machines based on Mechanical Process

Abrasive jet machine, Abrasive water jet machine, Ultrasonic machine.

Module - II Machines based on Electrical & Chemical Process

Electrical discharge machine, Chemical machine, Electro chemical machine. .

Module - III Machines based on Thermal Process

Laser beam machine, Plasma arc machine, Electron beam machine.

Evaluation:

Components	Other Components	Attendance	MTE	ESE
Weightage (%)	10	5	15	70

- V. K. Jain, "Advanced machining process" allied publication pvt. Ltd., new delhi (2002), ISBN 81-7764-294-4
- Pandey P. C. and Shan H. S., "Modern Machining processes", Tata Mcgraw-hill, New delhi (1980)
- Mc geough, "advanced methods of machining" chapman and hall. London, (1998)